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A Component-Based Access Control Monitor

Zhiming Liu, Charles Morisset, and Volker Stolz
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P.O. Box 3058, Macau SAR, China
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Abstract. A control of access to information is increasingly becoming
necessary as the systems managing this information is more and more
open and available through non secure networks. Integrating an access
control monitor within a large system is a complex task, since it has
to be an “all or nothing” integration. The least error or mistake could
lead to jeopardize the whole system. We present a formal specification of
an access control monitor using the calculus of refinement of component
and object systems (rCOS). We illustrate this implementation with the
well known Role Based Access Control (RBAC) policy and we show how
to integrate it within a larger system. Keywords: Component, Access
Control, RBAC, Composition

1 Introduction

In the design of most information systems, security issues are usually considered
as a secondary task. Roughly speaking, the first objective is to design a “working”
system and then, if it is possible within the time and budget constraints, try to
inject some security mechanisms. As a result of this approach, these mechanisms
are often poorly designed and their lack of integration in the global system can
cause major flaws. A classical example is when one can find, on a public server,
both an SSH server (quite secure) and a Telnet server (usually non secure). This
is often due to the fact that the telnet server is installed first, while the server is
not public yet and the SSH server is only installed afterwards. The consequence
is that not only the server is subject to simple attacks due to the weakness
of Telnet, but the server administrator thinks he is protected because he has
installed an SSH server and so will not enforce other security mechanisms.

Of course, there exist some domains where security issues are highly consid-
ered, usually because human beings or important sums of money are at stake.
This is particularly true for the military field, where many security mechanisms
have been created, including cryptographic techniques and access control mod-
els. In these fields, the question of security is addressed from the beginning, as
a part of the global system, which usually ensures a greater confidence in the
system.

The component-based approach in rCOS allows us to integrate the security
aspect closer into the software engineering process instead of trying to add
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it later. Some works already combine UML modeling and security issues, like
UMLsec [15]. However, the latter focuses more on the cryptographic problemat-
ics while we try to address access control. Basically, the access control problem-
atics consists in defining a policy, that is the set of granted (or denied) accesses
to a system by subjects (users, processes, etc) over some objects (files, resources,
processes, etc). An access control monitor (or reference monitor) is a program
enforcing the policy, that filters all the accesses to grant only the ones allowed
and to deny the ones forbidden.

The concept of access control can be split into the interface to the access con-
trol monitor and its actual implementation. As the rCOS software development
methodology of component systems uses the familiar features of UML for the
development process, we expect that a formalisation of monitoring will make
this important aspect more accessible to practitioners and students.

But not only allows this to talk about security in familiar terms to software
engineers, it also eliminates the disconnect between the software and reasoning
about security aspects that might introduce additional errors when both were
handled in different formalisms.

By using the notion of rCOS component interfaces, we can make sure that
the monitor component is at least used syntactically correct and according to
its protocol, that is the sequence of possible traces. Even the implementation
of a monitor profits from being modeled in rCOS: we can give a high-level,
mathematical specification and use the rCOS refinement techniques to obtain
an executable implementation [4,19]. Additionally, the available formal methods
for rCOS, like the verification of component composition through process algebra
and model checking, allows reasoning about the correctness and properties of the
composition of components realising access control with components providing
the system behaviour that is to be protected.

From a normative point view, according to the Common Criteria [2], which is
one of the authoritative references in the domain of safety and security systems,
a reference monitor is an abstract machine which enforces the access control
policies in a system and it should have the three following properties:

– unsafe subjects cannot interfere with it,
– unsafe subjects cannot circumvent its controls,
– it is simple enough to be analyzed and its behaviour understood.

We present here an approach addressing these properties. The main contri-
butions of this paper are:

– the implementation of an access control model based on a recent formaliza-
tion, which clearly separates the notion of policy and the one of implemen-
tation of a policy, and introduces some new concepts, such as the semantics
of requests,

– another case study of the rCOS tool, showing how its features can be suc-
cessfully applied to the access control problematics.

We first introduce in section 2 a formalisation of access control policies and
models, with the example of the Role Based Access Control (RBAC) policy.
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This formalisation, together with the different proofs, ensures that the monitor
behaviour is understood and could be analyzed. It also guarantees that unsafe
subjects cannot interfere with it, at least on the design level. Indeed, our ap-
proach, as most of classical software engineering approaches, does not ensure
that the implementation will not be modified at run-time, or that the hardware
the system is running on is safe. Then, in section 3, we outline the main fea-
tures of rCOS and section 4 gives a description of a specification of the access
control monitor within rCOS. Thanks to the component-based approach, it is
possible to ensure that the monitor cannot be circumvented by hiding the non
secure interfaces and integrating the monitor directly into the system. Finally,
we present in this section a way to integrate such a monitor in a larger system.

2 Defining Access Control Models

In this section, we present a way to define access control systems, based on two
main concepts: policy and model. Due to space limitation, we only give here
an overview, a complete definition can be found in [14,21]. The policy is the
description of the system on which it is enforced, defined as a state machine
together with the notion of secure states. Hence, an access control policy is
considered here as a functional property that a state machine must satisfy. Of
course, the definition of the policy also includes all the information relevant to
the definition of the system, such as subjects, objects, security information, etc.
At this point, a policy can be seen as “static”, since it is expressed over states,
and a state is a snapshot of the system. We then introduce the notion of the
model, which is basically a policy together with a set of requests (and, as we will
see later, the semantics of these requests). These requests are a way for subjects
to access objects. Lastly, it is possible to define an implementation (or several)
for a model, through a transition function and a set of initial states. Intuitively,
this implementation corresponds to a reference monitor and should be proved
correct with respect to the security policy, that is, returning a secure state for
any secure state and any request.

2.1 Access Control Policy

We first define the main entities of a system: S is the set of subjects (active
entities initiating actions in the system), O is the set of objects (passive entities
on which actions are made) and A is the set of access modes (read, write, append,
etc). In this paper, we represent an access by a triple (s, o, a) expressing that a
subject s accesses an object o according to the access mode a. Hence, we define
the set of accesses A as the Cartesian product S × O × A. Other approaches
are possible to represent accesses. For example, in order to deal with “joint
access” of a group of subjects over an object, as in [20], A can be defined as
(℘(S)\{∅}) × O × ℘(A).

Then we can define an access control policy P[ρ] = (S, O, A, Σ, Ω), where ρ is
the security parameter (that is all the information needed to define the policy),
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S the set of subjects, O the set of objects, A the set of access modes, Σ the set
of states and Ω the security predicate, characterizing the secure states.

Role-Based Access Control models are a set of fairly new models first intro-
duced in the nineties. The key concept of theses models is the notion of a role,
which can be seen as an abstraction of the one of subject. Intuitively, a subject
can have many roles and an object can be accessed by many roles. This indirec-
tion eases the management of subjects within a system, since the authorizations
are related to roles (which are supposed not to change a lot) rather than sub-
jects (who can change a lot). We give here a version of RBAC based on the
RBAC92 model [7], in order to simplify the presentation, but some more com-
plex versions can be found, as RBAC96 [24] extends RBAC92 with the addition
of users (different from the subjects) and a roles hierarchy defined as a partial
order. We write ρrbac = R for the security parameter of RBAC, where R is the
set of roles. A state σ ∈ Σrbac is a tuple σ = (m, UA, PA, roles) where m is the
set of current accesses, UA ⊆ S × R is the relation specifying which subject can
activate which roles, PA ⊆ (O × A) × R is the relation associating permissions
(i.e. pairs (o, a) ∈ O × A) to roles, and roles : S → ℘(R) specifies the set of
roles that have been activated by a subject. Hence, a subject may endorse many
roles, as defined by UA, but does not have to activate all of them at the same
time. The RBAC policy is specified by the predicate Ωrbac as follows. Given a
state σ = (m, UA, PA, roles), Ωrbac(σ) holds iff the two following properties are
satisfied.

∀s ∈ S {(s, r) | r ∈ roles(s)} ⊆ UA
∀s ∈ S ∀o ∈ O ∀a ∈ A (s, o, a) ∈ m ⇒ ∃r ∈ R (r ∈ roles(s) ∧ ((o, a), r) ∈ PA)

We write Prbac[ρrbac] = (S, O, A, Σrbac, Ωrbac) for the RBAC policy.

2.2 Access Control Model

As we said previously, a language of requests provides to the subjects of a system
a way to access to objects. We write R for the set of requests. Most access
control models consider at least the set Racc = {〈+, s, o, a〉, 〈−, s, o, a〉} allowing
to express that the subject s asks to get (+) or to release (-) an access over the
object o according to the access mode a. Depending of the access control model,
there can also exist some “administrative” requests allowing to modify security
functions of a state. We introduce here the requests allowing to change the active
roles of a subject: Radm = {〈+, s, r〉, 〈−, s, r〉}. The set of requests considered is
then Rrbac = Racc∪Radm. We make here a clear distinction between accesses and
requests. An access is the internal representation of actions currently done in the
system and is authorized or not according to the security policy. A request is an
action that a subject has to submit and is granted or not by an implementation.
However, requests are usually strongly related to accesses, and to make explicit
this relation, we introduce a notion of “weak” semantics of requests as a relation
[|R|]Σ ⊆ R × Σ. Given a request R and a state σ, the statement (R, σ) ∈ [|R|]Σ
characterizes the properties that a state σ must satisfy when it is obtained by
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applying (in a successful way) the request R over another state. For Rrbac, we
can define [|Rrbac|]Σ as follows:

(〈+, s, o, a〉, σ) ∈ [|Rrbac|]Σ ⇔ (s, o, a) ∈ Λ(σ)
(〈−, s, o, a〉, σ) ∈ [|Rrbac|]Σ ⇔ (s, o, a) �∈ Λ(σ)
(〈+, s, r〉, (m, UA, PA, roles)) ∈ [|Rrbac|]Σ ⇔ r ∈ roles(s)
(〈−, s, r〉, (m, UA, PA, roles)) ∈ [|Rrbac|]Σ ⇔ r �∈ roles(s)

where Λ(σ) denotes the set of all current accesses in σ. Note that such an ap-
proach to express a part of the semantics of requests only specifies the properties
that a state must satisfy but does not describe how such a state has been changed.
We introduce in [14,21] a semantical characterisation of such modifications. Due
to space limitation, we omit here this technical part which is not essential at
this level of specification.

Given a security parameter ρ, an access control model M[ρ] is defined by a tu-
ple M[ρ] = (P[ρ], [|R|]Σ) where P[ρ] = (S, O, A, Σ, Ω) is an access control policy,
R is a set of requests, and [|R|]Σ ⊆ R × Σ is a relation specifying the semantics
of requests. For example, we write Mrbac[ρrbac] = (Prbac[ρrbac], [|Rrbac|]Σrbac

) for the
RBAC model.

Implementing a model M[ρ] consists in defining both a set ΣI of initial states
and a transition function τ : R × Σ → D × Σ (where D = {yes, no} are the an-
swers) which allows moving from a state to another state of the system according
to a request in R. We write (τ, ΣI) for such an implementation and Γτ (E) for
the set of reachable states by τ from states occurring in E. For example, given
the set of initial states Σrbac

I = {σ ∈ Σrbac | Λ(σ) = ∅}, we introduce the imple-
mentation (τrbac, Σ

rbac
I ) of Mrbac[ρrbac] where τrbac is defined in table 1 and where

we use the following denotations:

(roles ⊕ (s′, r))(s) =
{

roles(s) ∪ {r} if s = s′

roles(s) otherwise

(roles � (s′, r))(s) =
{

roles(s) \ {r} if s = s′

roles(s) otherwise

Due to the huge number of states, we do not draw here the corresponding au-
tomaton. In [21,10], this implementation is proved to be correct according to both
the policy and the semantics of requests. More formally, we prove that each state
reachable from an initial state is secure (i.e. Γτ (ΣI) ⊆ {σ ∈ Σ | Ω(σ)}) and that
for all σ1, σ2 ∈ Σ, and R ∈ R, if τ(R, σ1) = (yes, σ2), then (R, σ2) ∈ [|R|]Σ .

This definition of the RBAC model within our formal framework ensures
that when a request is authorized, then the security policy is not violated. An
implementation of this model is defined in Focal [10], which is a IDE combining
a functional language, a specification language and a theorem prover. We now
want to implement it following a component-based approach, and we use the
rCOS methodology, which we introduce in the next section.
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Table 1. Implementation of the RBAC Model

τrbac(R, (m, UA, PA, roles))

=

��������������������������
�������������������������

(yes, (m ∪ {(s, o, a)}, UA, PA, roles))
if R = 〈+, s, o, a〉
∧ ∃r ∈ R r ∈ roles(s) ∧ ((o, a), r) ∈ PA

(yes, (m \ {(s, o, a)}, UA, PA, roles))
if R = 〈−, s, o, a〉

(yes, (m,UA, PA, roles ⊕ (s, r)))
if R = 〈+, s, r〉
∧ (s, r) ∈ UA

(yes, (m,UA, PA, roles 	 (s, r)))
if R = 〈−, s, r〉

(no, (m, UA, PA, roles)) otherwise

3 Models and Their Refinement and Composition

For a formal method and its tool support to be practically effective, it will have to
be integrated with a development process and CASE tools, such as MasterCraft
[26,18]. For these purposes, the rCOS semantic theory defines the important con-
cepts and artifacts in the domain of object-oriented and component-based soft-
ware engineering, like classes, objects, components, interfaces, contracts, compo-
sition (connectors), coordination and glue. It provides the behavioral semantics
of these concepts with high level rules for refinement and verification.

Interfaces, Contracts and Components. Component-based software engi-
neering creates new software by combining prefabricated components with pro-
grams that provide both glue between the components, and new functionality
[5]. Furthermore, there seems to be no disagreement on the following interrelated
properties that components enjoy.

1. Black-box composability, substitutability and reusability:“a component is a
unit of composition with contractually specified interfaces and fully explicit
context dependencies that can be deployed independently and is subject to
third party composition” [25].

2. Independent development: components can be designed, implemented, veri-
fied, validated and deployed independently.

3. Interoperability: components can be implemented in different programming
languages and paradigms; but they can be composed, be glued together and
cooperate with each another. These features require that a component has a
black-box specification of what it provides to and what it requires from its
environment [25].
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Components and Processes. We distinguish service components from process
components [12,3]. A service component, simply called a component, provides
computational services to the environments through their provided interfaces.
However, the implementation of a provided service may also require services
from other components. Thus, a component can have required interfaces, and a
component with required interfaces is called an open components and one with-
out required interfaces is called a closed component. A distinct feature of the
rCOS definition of a component is that contracts are associated to the provided
interfaces and the required interfaces separately. This separation makes the spec-
ification of a component a truly black-box specification, even without the need
to know the information about the temporal dependency between a provided
service and a required service.

A process component, simply called a process, does not provide services to
other components. Instead it coordinates and glues components so that the ser-
vice components become suitable for a specific application. Therefore, a process
only has required interfaces and it actively invokes services of other components.
A component on the other hand, though it may contain coordinating processes
inside it, is passive and only interacts with the outside when a provided service is
requested. We will see that compositions among components are different from
their compositions with processes and compositions of processes [3]. We also
proved in [3] the composition of a component and a process is a component.

In rCOS, a process is used to model programs that coordinate and schedule
services of components, programs that are used to glue components together
to make new components, and to model application tasks that are realized by
requesting services from components.

Contracts of Interfaces. An interface provides the syntactic type information
for an interaction point of a component. It consists of two parts: the fields decla-
ration section, that introduces a set of variables with their types, and the method
declaration section, that defines a set of method signatures. Each signature is
of the form m(T1 in;T2 out), where T1 and T2 are type names, in stands for an
input parameter, and out stands for an output parameter.

Current practical component technologies provide syntactical aspects of in-
terfaces only and leave the semantics to informal conventions and comments.
This is obviously not enough for rigorous verification and validation. For this,
we define the notion of contracts of interfaces.

The contracts of the interfaces of a component describe what is needed for the
component to be used in building and maintaining software systems. The descrip-
tion of an interface must contain information about the viewpoints among, for
example functionality, behavior, protocols, safety, reliability, real-time, power,
bandwidth, memory consumption and communication mechanisms, that are
needed for composing the component in the given architecture for the appli-
cation of the system. However, this description can be incremental in the sense
that newly required properties or view points can be added when needed accord-
ing to the application [11].
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In the current version of rCOS, a contract of an interface specifies the seman-
tics of the interface:

– The initial condition defines the allowable starting states.
– The functionality specification of each method op is a reactive design of the

form g&p 
 R. In Hoare and He’s UTP [13], g is called the guard for a syn-
chronization with the environment, p is called the precondition and R the
postcondition of the design. An invocation to op when the guard is false will
be blocked. When the guard is true, the execution will take place and ter-
minate in a state satisfying the postcondition R if the precondition p holds,
otherwise the execution diverges.

– The interaction protocol, specifies traces of method invocations, for the en-
vironment to follow when interacting with component via the interface.

The domain of the reactive designs forms a complete lattice with the predicate
implication as the partial order, and it is closed under the convention program-
ming compositions of sequential composition, condition choice, non-deterministic
choice and the fixed point of iteration. These compositions are also monotonic.

A contract has a failure-divergence semantics with that the refinement re-
lation between contracts is defined in the same way as CSP refinement under
this semantics [22]. A complete proof technique using upwards and downwards
simulation is established [3].

We can divide the fields (that are the state variables) of an interface into data
variables and control flow variables, the reactive designs can be decomposed into
design of the synchronisation control the design of data functionality. The designs
of the flow of control are reactive designs about the change of control states, and
the designs of the data functionality are simply pre and post conditions.

4 Access Control Component

Defining a reference monitor component from the previous formalisation requires
a slight adaptation. Indeed, most of the concepts introduced in section 2 are de-
fined in a formal way, using a set-based denotation and a functional approach.
Since rCOS follows an object-oriented approach, we need to adapt these con-
cepts. Roughly speaking, we first introduce a new class for every set, as described
in figure 1. Rather than defining functions to associate roles to a subject, we use
the object-oriented approach by defining a UML association between the class
Subject and the class Role, with the target roles: Role[*] {unique}. Note
that we define the relation UA as an attribute of the class Subject rather than
as another association, to clarify the presentation. We define the permissions
by introducing the method pa(r:Role, m:Mode ; ret:boolean), where r and
m are input parameters and ret is the output parameter, in the class Object:
o.pa(r,m;ret) will set ret to true if the role r can access the object o according
to the access mode m.

Moreover, a class is defined for every kind of request and as a direct conse-
quence, the reference monitor contains four different methods, that we will refer
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Fig. 1. Class Diagram in the rCOS Modeler

to below as the τ methods, each one of them treating a different type of request.
The set of current accesses belongs to the internal state of the monitor and so
we remove the reference to states in the parameters of the τ methods, which
take a request r and return a decision d.

To stick more to the formal definition, we would have to also define a global
method τ , which would take any type of request and would call the appropriate
method according to the type. Such a method is however not necessary, so we
do not include it in the interface ValReq.

component Monitor {
provided interface ValReq {

public tauAdd(AddRequest r ; Decision d);
public tauRel(RelRequest r ; Decision d);
public tauAddR(AddRoleRequest r ; Decision d);
public tauRemR(RelRoleRequest r ; Decision d); }}

The controller class of this component (i.e. the class implementing the inter-
face) is the class Monitor, which contains the current state, itself containing the
set of current accesses. The security predicate is expressed as a class invariant,
which ensures that the set of current accesses is always correct.
public class Monitor {

public State currentState;
invariant : ∀ Subject s, ∀ Role r ∈ s.roles: s .ua(r)

∧ ∀ Access a ∈ currentState.currentAccesses:
∃ Role r ∈ a.subject.roles: a.object.pa(r, a.mode);
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Note that we use here the simplified notation of rCOS about output parame-
ters: when there is only one output parameter, it can be considered as a return
parameter like in usual programming languages. In the same way, to ease the
reading of this paper, we use mathematical denotations for the logical connectors
and the set operations instead of the rCOS keywords.

We are now in position to specify in the class Monitor the four τ methods
defined in the interface ValReq. We specify them to respect the semantics of
requests.
public tauAdd(AddRequest r ; Decision d) {
[ � d’.isYes() ⇒ ∃ Access a ∈ currentState’.currentAccesses:

r .subject = a.subject ∧ r .object = a.object ∧ r .mode = a.mode]
}

where d’ denotes the value of the variable d after the evaluation of the method.

public tauRel(RelRequest r ; Decision d) {
[ � d’.isYes() ⇒ ∀ Access a ∈ currentState’.currentAccesses:

r .subject 
= a.subject ∨ r .object 
= a.object ∨ r .mode 
= a.mode]
}

public tauAddR(AddRoleRequest r ; Decision d) {
[ � d’.isYes() ⇒ r . role ∈ r.subject.roles ’]
}

public tauRemR(RemRoleRequest r ; Decision d) {
[ � d’.isYes() ⇒ r . role 
∈ r.subject.roles ’]
}

The notation [ � p] stands for the design with the precondition true and the
postcondition p. This specification ensures that the methods tauAdd, tauRel,
tauAddR and tauRemR behave correctly according to the requests. Moreover, the
separation of the definition of the security policy from the specification of these
methods eases the reusability of the component. Indeed, it is possible to modify
the security policy without changing this specification, if the considered requests
are the same. This approach introduces a level of indirection, since these methods
are not specified to respect the security policy, but rather to change the set of
current accesses according to the requests, and this set is required to respect the
security policy by the invariant.

Note that we present here a simple design for a reference monitor, in the sense
that there is no need for defining a protocol between these methods. However,
it is possible to define several global τ functions, each one of them applied in a
different “security mode”.

For instance, let us consider that our component relies upon an authentication
mechanism (as a login/password system). If an attack is detected against this
mechanism, like a brute-force attack, where an opponent tries every possible
password for a given login, the system could decide to prevent any risk by denying
any access asked by non-root subjects (we consider here that the root user cannot
connect from the outside and so it is less prone to a brute force attack). In this
case, a special mode “brute-force attack detected” could be switched on, and
the method used to authorize accesses would be a more restrictive one. Such an
approach would imply to define a protocol for the interface, corresponding to
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the several modes that could be switched on. Here again, specifying the policy
as an invariant helps, since it is defined only once, and as long as the different
methods tau respect the semantics of requests, they also respect the policy.

The definition of the different methods in the rCOS tool according to the
formal definition given in table 1 and both refining the previously defined design
and respecting the class invariant could be the following one.
public tauAdd(AddRequest r ; Decision d) {

for (Role ro : r .subject. roles){
if (r .object.pa(ro, r .mode))
then {

currentState.currentAccesses.add(r.subject, r .object, r .mode);
return yes;

}
}
return no;

}

public tauRel(RelRequest r ; Decision d) {
currentState.currentAccesses.remove(r.subject, r .object, r .mode);
return yes;

}

public tauAddR(AddRoleRequest r ; Decision d) {
if (r .subject.ua(r. role)){

r .subject. roles .add(r.subject);
return yes;

}
return no;

}

public tauRemR(RemRoleRequest r ; Decision d) {
r .subject. roles .remove(r.subject);
return yes;

}

These implementations have been obtained using the rCOS refinement tech-
niques [4,19]. They are proved to be correct by showing that the predicate corre-
sponding to their semantics logically implies the previous specifications. Current
work in the rCOS tool consists in integrating a theorem prover, in order to for-
mally prove this implication.

Since we do not require the monitor to be complete, that is, to accept every
correct request, the statement return no is also a valid implementation for each
of the previous methods.

Integration. The reference monitor component described in the previous sub-
section acts as an oracle: its interface allows submitting a request which is either
granted or denied. The set of current accesses stored in the internal state is only
used to describe the policy. Indeed, some policies (e.g. Bell and LaPadula [16]
or the Chinese Wall [1]) are defined according to the current accesses, to avoid
some forbidden flows of information between objects. But in most of the cases,
the interface of the reference monitor is not directly called by the user of the
system. For instance, let us consider a Database Management System (DBMS),
where the subjects of the monitor are the users of the database and the objects
are the tables. It is also possible to consider an object as a tuple, but it can raise
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some problems with polyinstantiation [23]. A user executes an SQL query, which
should be translated in a request 〈+, s, o, a〉, where s is the subject associated
with the user (usually known in the environment from the connection), o is the
concerned table and a is defined according to the query.

A DBMS can be described as the following component (we consider here only
the SQL queries INSERT, SELECT, UPDATE).
component DBMS {

provided interface SQLQuery {
public connect (string id, string password; string con);
public select (string con, string query; boolean ok);
public insert (string con, string query; boolean ok);
public update (string con, string query; boolean ok);
public disconnect (string con);

}
}

The method connect allows a user to connect to the DBMS using his login/pass-
word, and get a connection identifier, the methods select, insert and update
allow to respectively execute a SELECT, an INSERT and an UPDATE SQL query
over a connection identifier and disconnect closes a connection identifier.

The problem is the following one: we want to keep this interface for the user,
in order to be transparent, and at the same time filter the SQL queries in order
to grant only the ones respecting the security policy. We introduce a component
Proxy as described in figure 2, which composes the Monitor and DBMS compo-
nents (and hides their interfaces) and provides the same interface as DBMS.

Fig. 2. Integration of a monitor in a database
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component Proxy {
provided interface SQLQuery { ... }
composition : (Monitor || DBMS) \ { DBMS.SQLQuery, Monitor.ValReq }

}

The controller class of Proxy implements the interface SQLQuery and the
pseudo-code for the method select is the following one.
public select(string con, string query; boolean ok) {

Subject s := subject associated with the user;
Object o := table concerned by the query;
if (Monitor.valReq.tauAdd(〈+, s, o, r〉) = yes)
then return DBMS.SQLQuery.select(con, query)
else return false;

}

The method insert (resp. update) is defined in a similar way, except that the
request passed to tauAdd is 〈+, s, o, w〉 (resp. both 〈+, s, o, r〉 and 〈+, s, o, w〉).

With the previous definition, the accesses are never released, which is not a
problem with the usual RBAC model, but which could be one with other policies
such as the one of Bell and LaPadula. To address this issue, it is possible to
release the accesses either at the end of the method, after the call to the DBMS
or when the user disconnects from the DBMS.

5 Conclusion

By following a component-based approach to design and implement an access
control reference monitor, we address some major issues as stated by the Com-
mon Criteria. Indeed, the mechanisms of composition and interfaces hiding allow
to have a real black-box component, thus preventing unsafe subjects to inter-
fere with it or to circumvent its controls. Moreover, the definition of a Proxy
component makes its use transparent and easily integrable in a larger system, as
a Database Management System. Our development relies upon a sound formal
definition, which guarantees the correctness of the specification, since the rCOS
tool allows integrating the formal aspect and will, in the future, use external
tools, like model-checking or theorem proving, to verify and validate that the
implementation meets the specification. Indeed, the proof of the correctness of
the monitor is currently only done “on the paper”, by induction over the reach-
able states. However, an objective of the rCOS Tool is to generate JML [17]
specifications, and by using a tool like Krakatoa [8], which generates the proof
obligations related to pre- and post-conditions and to class invariants, we could
prove the correctness of the monitor with a theorem prover.

We have implemented here the RBAC policy, but thanks to the formal frame-
work our work is based on, this approach could be used to define other poli-
cies, some of them are even already defined within this framework (e.g. Bell
and LaPadula, the Chinese Wall, RBAC96, Delegation-Based, Lampson, ACL,
Capabilities).

There are several ways to extend this work. For instance, nothing is said about
the way to associate subjects and objects with roles in the example. Though it
is not possible to define them in the most general case, it could be possible to
determine them from use cases [6].
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Finally, from a more practical point of view, a library of access control com-
ponents could be defined. Such a library could allow software engineers with no
experience in security and/or formal methods to easily use and enforce certified
reference monitors.
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J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

16. LaPadula, L., Bell, D.: Secure Computer Systems: A Mathematical Model. Journal
of Computer Security 4, 239–263 (1996)

17. Leavens, G.T.: Jml’s rich, inherited specifications for behavioral subtypes. In: Liu,
Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 2–34. Springer, Heidelberg
(2006)

18. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support.
In: Intl. Symp. on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2006), full version as UNU-IIST Technical Report 343 (August
2006), http://www.iist.unu.edu

19. Liu, Z., Stolz, V.: The rCOS method in a nutshell. In: Fitzgerald, et al. (eds.) [9]
20. McLean.: The algebra of security. In: Proc. IEEE Symposium on Security and

Privacy, pp. 2–7. IEEE Computer Society Press, Los Alamitos (1988)
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