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Abstract

This paper presents a formal semantics of UML sequence diagram. In abstract syntax form, a well-formed
sequence diagram corresponds to an ordered hierarchical tree structure. The static semantics of a sequence
diagram is to check whether it is consistent with the class diagram declaration as well as with its well-formed
tree structure. Meanwhile, the dynamic semantics is defined in terms of the state transitions that are carried
out by the method invocations in the diagram. When a message is executed, it must be consistent with system
state, i.e., object diagram and the state diagrams of its related objects. The semantics clearly captures the con-
sistency between sequence diagram with class diagram and state diagram. Therefore, it is useful to develop
the model consistent checking functions in UML CASE tools. And it also can be used to reason about the
correctness of a design model with respect to a requirement model.
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Introduction 1

1 Introduction

The Unified Modeling Language (UML) [BRJ99, RJB99] is a general-purpose visual modelling language that
is used to specify, visualize, construct, and document the artifacts of a software system. It has become the
de-facto standard for object-oriented modelling. This paper presents a formal semantics of sequence diagram
by using a slightly modified version of the classic model oftransition systems(or action systems) [MP81].
The motivation is to provide a natural and intuitive formal semantics of UML sequence diagram based on the
users’ general understanding of object-oriented programming language.

In fact, there are nine kinds of diagrams in UML for modelling system from different aspects. The system
functional requirements are captured in use case diagrams. In order to realize use cases, system analysts
and designers should provide system static structural models: class diagrams and system dynamic models:
sequence diagrams (collaboration diagrams), state diagrams, and activity diagrams. An object diagram is an
instance of a class diagram. Component and deployment diagrams are used for modelling system management
and architecture aspects. However, the following two problems are most important when people are concerned
with system analysis and design process with UML:

• How can we ensure that the models for a system analysis and its design are consistent?

• How can we check that a design model correctly realizes a system requirement model?

The first question asks us to check the consistency between different models. For example, if a sequence
diagram uses an object, the class (or type) of the object should be defined in class diagram. As for the second,
we must guarantee that each use case can be realized by its corresponding sequence diagrams in the context
of the design class diagram.

In order to answer the two questions above clearly, we need a formal semantics for UML different diagrams.
In this paper, we only focus on the semantics of sequence diagrams as well as its relevant problems with other
diagrams. Based on the formal semantics of sequence diagram, we can answer questions like:

• Is a sequence diagram well defined?

• Is a sequence diagram consistent with a class diagram?

• Is a sequence diagram consistent with a state diagram?

• Does a sequence diagram correctly realize a use case of which formalization was given in [LLH02]?

Such a semantics is also required for the development of tools for identifying inconsistencies.

In this paper, we define a static semantics for UML interaction diagrams to support checking the well-
formedness of an interaction diagram. This well-definedness is defined and checked in the context of other
diagrams, i.e. its consistency with a class diagram and a state diagram. We also define a dynamic semantics
to capture the behavior of an interaction diagram as a finite sequence of message calls.

Since we only consider the synchronous method call, the event of sending and receiving signals is ignored
in this paper. We directly interpret the interaction between objects into object method invocation in object
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Class Diagrams and Object Diagrams 2

oriented programming language sense. Concurrency with asynchronous communication can be considered
in an extension of this semantic model for component-based development [HLL03]. Therefore, the object,
method call and other concepts of object-oriented programming language can be used as basic concepts for
defining the semantics of sequence diagram.

The dynamic semantics of a sequence diagram in this paper is interpreted as a trace-based terminated process
(thread) of CSP. The advantage of this semantics is that it can help system analysts and designers to draw
interaction diagram based on their understanding of OO methodology and OO programming. Therefore, it
will be natural to translate the UML models to Java code generation.

The remainder of this paper is organized as follows. Section 2 introduces the notions of class diagrams and
object diagrams and their representation in our framework. Section 3 overviews the UML sequence diagram
as well as the relationship with other UML models, i.e., class diagrams and state diagrams. The syntax of
sequence diagram is defined formally. In Section 4, we introduce the computational model that we will use to
define sequence diagrams. The formal semantics of sequence diagram is given in Section 5 from both static
and dynamic aspects. Finally, the conclusions are drawn in Section 6 with some discussions on the semantics
as well as related and future work.

2 Class Diagrams and Object Diagrams

As we will define the semantics of a sequence diagram in the context of a class diagram, we introduce the
notation of class diagrams first. A class diagram∆ of an application identifies the environment in which the
sequence diagrams operate. This environment consists of four parts:

1. The first part provides thestatic information on classes and their inheritance relationships:

• CN : the finite set of classes identified in the diagram. We use capital letters to represent arbitrary
classes and types.

• super: the partial function which maps a class to itsdirect superclass, i.e.super(C) = D if D is
the direct superclass ofC.

2. The second part describes the structure of each class and forC ∈ CN , it includes

attr(C): the set of{< a1 : T1 >, . . . , < am : Tm >} attributes ofC, whereTi stands for the type of
attributeai of classC, and will be referred bytype(C.ai).

As in [AM02], the type of an attribute is assumed to be a built-insimple data type, such as the natural
numbersNat. Each classC defines a type, also denoted byC. We allow the construction of a type
from the direct product of two types, and the power setP(T ) of a typeT .

3. The third part identifies the relationships among the classes:

AN : the finite set of associations names captured in the diagram and the setAss of associations that is
a subset ofCN ×AN × CN .

For simplicity, we only deal with binary associations. General relations among classes can be modelled
in the same way.

4. The fourth part defines the set of methods for each class in the diagram:

method(C) is the set of all methods of classC in the diagram.
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The multiplicities of the roles of an association will be specified in the invariant of the system [LLH02] which
are not essential to this paper.

User

Reservation Publication Copy

Loan

IsOn

Has1 *

takes

Makes

1

*

1 * 1

Borrows

1

*

*

IsHeldFor

IsAvailable

IsLendable

*

*

1 0..1
1 1

Figure 1: Conceptual class diagram of a library system

Example The formalization of a conceptual class diagram of a library system shown in Figure 1 is given as
follows, where we omitted the methods of classes, and every class is a subclass of classObject and we omit
attr(C) whenC has no attributes:

CN = {User, Loan,Copy,
Publication, Reservation}

AN = {Takes, Borrows, IsAvailable,
IsLendable,Has, IsOn,
IsHeldFor,Makes}

super(C) = Object, for all C ∈ CN
attr(User) = {< id : String, name : String >}
attr(Loan) = {< date : Date >}

Ass = {< User, Takes, Loan >,
< Loan, Borrows,Copy >,
< Copy, IsAvailable, User >,
< Publication, IsLendable, User >,
< Publication,Has,Copy >,
< Reservation, IsOn, Pulication >,
< Copy, IsHeldFor,Reservation >,
< User,Makes,Reservation >}

A refinement of the model allows us to add more details, such as attributes and associations [HLL02].

The well-formedness of a class diagram is specified in terms of OCL, that can be easily defined in a relational
semantic model [LLH02].

The dynamic semantics of a sequence diagram is to be defined in terms of state changes of the system. Astate
of the system with a given class diagram is in fact a UML object diagram of the class diagram. An object
diagram is a snapshot of the class diagram which consists the information about what the current objects are,
what the current links by associations among these objects are, and what the state of the objects are, i.e. the
values of their attributes.
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Sequence Diagrams 4

3 Sequence Diagrams

In UML use case diagram, each use-case is a system function. Generally, a use case is defined as one basic
course and several alternate courses in requirement analysis phase. A use-case course describes a sequence of
interactions between actors with the system, which is a abstract template of a family of scenarios. According to
each course description, an sequence diagram is presented in system design phase to realize the corresponding
use case course.

Sequence diagrams are used to present the dynamic behavior of system design while class diagrams are system
static structure. As one of two kinds of UML interaction diagrams, a sequence diagram shows interactions
between objects arranged in a time sequence.

A sequence diagram forCheck campaign budgetuse case in [BMF02] is shown in Figure 2.

:Client
Manager

Campaign

getName()

:Campaign

listCampaigns()

* getCost()

* getCampaign
Details()

checkCampaignBudget()

:Advert

getOverheads()

Figure 2: Sequence diagram forCheck campaign budgetshowing foci of control and explicit return

The sequence diagram shows the interactions between actorCampaignManager with system three ob-
jects which are: Client, : Campaign and : Advert. There are three system method calls, also called
messages, which are invoked sequentially by actorCampaignManager. They are: Client.getName(),
: Client.listCampaign(), and: Campaign.checkCampaignBudget(). In the diagram, we can also find
that there are other three messages which are invoked by above three system method calls. The message
: Campaign.getCampaingDetails() is directly invoked by object: Client, and the other two messages
: Advert.getCost() and: Campaign.getOverheads() are invoked by object: Campaign.

Before defining the semantics of sequence diagrams, we need to give the formal syntax of sequence diagrams.
We introduce an ordered hierarchical structure tree to present well-formed sequence diagram for a thread with
synchronous method calls. For the complex concurrent system with multithreads and asynchronous method
calls can be defined based on this work.
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3.1 Syntax of Sequence Diagram

For a sequence diagram of one thread, there is a corresponding ordered structure tree in which the root node
denotes the starting actor or object, tree nodes are objects, and edges represent links and passing messages.
Since a sequence diagram is defined as a sequence of messages, we should give formal definition of messages.

Definition 1 A message is a tuple:

msg = (obi : Ci, obj : Cj , action, order)

where

• obi is the source object of the message with class typeCi, of course the source of message can also be
an actor.

• obj is the target object of the message with class typeCj .

• action is a guarded method call of the formg → act , whereg is a Boolean expression of attributes of
source objectobi, and possibly public variables, andact is either a command without method calls (an
internal action) or a method callobj .m().

• order is the order number of the message in the corresponding sequence diagram structure tree. All
the order numbers of messages in the sequence diagram construct a partial order. The order number
of a message is given according to its position in the tree. The root node is corresponding to the
starting object or actor of a sequence diagram. Then the first layer branches with order number is
1, 2, , 3, · · · , n. From theu-th nodeobu of first layer object nodes, perhaps there arem nodes. The
corresponding order numbers of branches areu.1, u.2, · · · , u.m. Theu.v is thev-th branches from the
node objectobu. Given the sequence diagram example in Figure 2, the corresponding structure tree with
ordered messages is shown in Figure 7.

3.2 Hierarchical Structure Tree of Sequence Diagram

We now look at how composite diagrams can be constructed from basic diagrams by using programming
language-like constructs.

obi : Ci obj : Cj 

g -> m()

obi : Ci

obj : Cj 

u.v : g -> m()

Figure 3: Basic activation notation
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obi : Ci

obj : Cj 

obj : Cj 

g -> m()

obk : Ck obi : Ci

obk : Ck obk : Ck 

u.v : g -> m()

 * g1 -> n1()

g2 -> n2()

u.v.1: * g1 -> n1() u.v.2: g2 -> n2()

Figure 4: Iteration notation

• The activation notation of a basic message in sequence diagram is shown in Figure 3.

• The iterative notation of messages is shown in Figure 4. The corresponding ordered tree can be con-
structed in the figure.

obi : Ci

obi : Ci

obj : Cj 

obj : Cj obj : Cj 

obj=new Cj() 

destroy()

u.v: obj=new Cj() u.v+1: destroy()

Figure 5: Create and destroy notations

• The special messages such asnewCj() for the creating an object anddestroy are shown in Figure 5.

• And the branching choice case of messages can be dealt as shown in Figure 6.

A complicate sequence diagram can be constructed by above basic notations. For sequence diagram of Fig-
ure 2, we can easily derive its corresponding message ordered structure tree as shown in Figure 7.
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obi : Ci obj : Cj 

b1  -> m()

b2 -> n()

obi : Ci

obj : Cj obj : Cj 

u.v+1: b2 -> n()u.v: b1  -> m()

Figure 6: Branching choice notation

Campaign Manager

:Client

:Campaign:Advert

:Campaign

:Campaign

:Client

3: checkCapaingnBudget()

2: listCampaigns()

2.1: *getCampaignDetails()

3.2: getOverheads()3.1: *getCost()

1: getName()

Figure 7: Sequence diagram structure tree

The ordered structure tree presents the hierarchical relationships among the messages. And the execution of
messages (i.e. execution of the method represented by the message) in the sequence diagram must follow the
traversing rule of first root then son trees from left to right. For one thread sequence diagram, there is only one
token to denote control right of invoking message. In the beginning of an execution of the sequence diagram,
the token is in the actor’s hand. When the source of message wants to invoke a message, the source object or
actor must hold the token. When the message is invoked, the token should be passed the target of message.
The source of message will wait until the target return the token, it can invoke another message or return the
token to the previous source which invoked it before. We consider that the execution of a sequence diagram
from the start to termination is the process of the token traversing from the root node of the hierarchical tree
to subtrees from left to right, finally the token return back to the root.

We can also use a stack to store the objects for controlling the execution process of the sequence diagram with
one thread. At the beginning of execution, the corresponding controlling stack isempty. And then the first
action is to push the starting object or actor into the stack. The current execution control right is owned by the
top element. If the top element object invokes a method call, then the invoked object should be pushed into
the stack. After the message returns, the top element object should be popped out. Therefore, the execution
of sequence diagram is the process of the nodes of its structure tree entering and leaving the stack. Finally the
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Computational Model 8

:Client
Manager

Campaign

getName()

:Campaign :Advert

* getCost()

Figure 8: Illegal sequence diagram

execution terminates and the stack becomes empty again. For example, the stackstk of the sequence diagram
in Figure 2 is as the following traces

stk = ∅ //* initial state
stk =< CM > //* start
stk =<: Client, CM > //* executegetName()
stk =< CM > //* finish getName()
stk =<: Client, CM >
stk =<: Campaign, : Client, CM >
stk =<: Client, CM >
stk =< CM >
stk =<: Campaign,CM > //* loop
stk =<: Advert, : Campaign,CM >
stk =<: Campaign,C.M. >
stk =<: Advert, : Campaign,CM >
· · · · · ·
stk =<: Campaign, : Campaign,CM >
stk =<: Campaign,CM >
stk =< CM > //* finish checkCapaingBudget()
stk = ∅ //* termination

whereCM is the abbreviation ofCampaignManager.

If the order of the messages given in the sequence diagram with one thread is not conformed to a hierarchical
structure tree, then the diagram is not well-formed. For example, the sequence diagram shown in Figure 8
is illegal because after the first messagegetName() finished, the thread control point is returned the actor
CampaignManager, however the next message∗getCost() in the diagram should be invoked by object
: Campaign which does not own the thread control right at that time.

4 Computational Model

We use a notation similar to a transition or action system [MP81] to combine the models of class diagrams
and the model of sequence diagrams together to a design model of a system. Asystemis defined by a tuple
(α, Φ,Θ, P ) where
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Computational Model 9

• α denotes the set of program variables known to the program.

• P is a set ofoperations, each of which is a predicate that relates the initial values of program variables.
The predicate is of the formp(x) ` R(x, x′) (called a design in [HH98]):

p(x) ` R(x, x′) def
= ok ∧ p(x) ⇒ ok′ ∧R(x, x′)

wherex andx′ represent the initial and final values ofx respectively;ok asserting that the operation is
started well andok′ means that the operation terminated;p(x) is called the precondition, andR(x, x′)
the post-condition or the transition relation.

• Θ is a predicate overα, called theinitial conditionand defines the initial state(s) of the system.

• Φ is a predicate overα, called theinvariant. It must be true in any initial state and preserved by each
operation inP .

An action only changes a subset of variables declared inα. Thenormal formof a design is thus aframed
designof the formV : (p ` R), that denotesp ` R ∧ (w′ = w), whereV andw are subsets ofα, and
w = α−V . When there is no confusion, we will omit the frame in a design by assuming that a variablex can
be changed by a design only if its primed versionx′ occurs in the design.

The above model has to take into account the following OO aspects.

1. A sequence diagram is composed from a number of operations, i.e. method calls, while a class diagrams
determines the following variables on which sequence diagram operates:

• for every class, aclass variablethat takes values of sets of objects of the concept;

• for every object of a concept, a variable for each attribute of the concept;

• for every association, anassociation variablethat take values of sets of links (i.e. pairs) between
objects of the associated classes.

2. Due to the inheritance mechanism, the effect of a use case on a variable depends on its current type
during execution, rather than its originally declared type.

3. As in imperative languages, a state of a variable is its current value. An object is represented as a finite
tuple that records itsidentity, current type, and the values of its attributes.

In summary, an OO design model is a systemS = (α, Φ,Θ, P ) where

• P consists of a set of operations obtained from a number of sequence diagrams.

• α identifies the variables on which the operations inP operate and it is determined by the class diagram
and the input and output parameters of the methods in the sequence diagram.

• The invariantΦ formally models the invariant constraint, such as multiplicities and business rules. The
pair (α, Φ) thus gives the formalization of the class model.

• Θ is a condition to be established when starting up the system.
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5 Formal Semantics of Sequence Diagram

We consider both static and dynamic semantics of sequence diagrams. In an abstract syntactic form, a well-
formed sequence diagram corresponds to an ordered hierarchical tree structure. The static semantics of a
sequence diagram is to check whether it is consistent with the class diagram declaration. This means that
the static semantics is always dependent on a given class diagram∆. Meanwhile, the dynamic semantics is
defined as a sequence composition of the first layer system messages of its ordered tree. When a message is
executed, it must be consistent with system state, i.e., object diagram and the state diagrams of the relevant
objects.

5.1 Static semantics of sequence diagram

Given a class diagram∆, let CN be the set of class names in∆, AN the set of association names,Ass the
set of all associations each of which is represented in the form< C1, A, C2 >, whereC1, C2 ∈ CN and
A ∈ AN , andmethod(C) be the set of all the methods of classC in ∆. Obviously, for a given message

msg = (obi : Ci, obj : Cj , g → m(), order)

we can define its static semantics as follows.

Ss[[smg]]
def
= Ci ∈ CN ∧ Cj ∈ CN∧

∃A ∈ AN · < Ci, A, Cj >∈ Ass ∧m ∈ method(Cj)

The static semantics of a sequence diagram is defined as the conjunction of all its messages in the structure
tree. Therefore, thestatic consistencyof a sequence diagram is captured by this static semantic condition, i.e.
a sequence diagram isstatically consistent(in the context of a class diagram∆), iff the static semantics of
every message istrue. In particular, all classes of objects in the sequence diagram must be a class in the class
diagram, every method from a classC to another classD must be a declared method in classD, and there
must be an association between classC andD so that the method ofD can be called byC. The checking of
this kind of consistency can be easily automated.

However, the static semantics is not enough for the analysis of the dynamic consistency, such as the multi-
plicity constraints on associations and other state constraints on a class diagram [LLH02, LHLC03] or when
two objects are actuallylinkedwhen a method of one is being invoked by the other in a state. This requires a
dynamic semantics and we present it in the following section.

5.2 Dynamic Semantics of Message

Execution of a message makes system change from one states to anothers′. Based on Hoare and He’s
Unifying Theories of Programming[HH98], we can define a message action as first order logic formula on
a pair of system states(s, s′). Thus, the dynamic behavior of a sequence diagram can be considered as
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Formal Semantics of Sequence Diagram 11

the sequential composition of executions of its containing messages with some internal small connecting
programs. The sequential composition corresponds to relational composition as follows:

P (s, s′);Q(s, s′) def
= ∃m · P (s,m) ∧Q(m, s′)

Before giving the semantics of messages, we introduce some useful auxiliary functions: for statess ands′,

• s(C) : the set of objects of classC in states.

• s(ob): the corresponding state of objectob in system states, i.e. the values of the attributes ofob.

• s(g): a boolean value of guard conditiong under system states.

• Enable(s, ob, m) : a boolean value. It equalsture if the methodm of objectob is enabled under system
states.

• pres(ob.m): the precondition of methodm of objectob under system states.

• post(s,s′)(ob.m): the postcondition of methodm of objectob under system state pair(s, s′).

• Link(s, ob) : the object set which can be navigated from objectob by its associations in the system state
s.

we can define the dynamic semantics of action execution (exceptcreate action) as follows:

• A method invocation can only be executed when the method is enabled in the current state:

Sd[[ob.m()]]
def
=

Enable(s, ob,m)∧
(pres(ob.m) ⇒ post(s,s′)(ob.m))

There whenpres(ob.m) does not hold in a state, the invocation would bechaos, and thus the sequence
diagram is notdynamically consistent.

• A guarded message invocation can go ahead only when the guard is evaluated to be in the current state:

Sd[[g → ob.m()]]
def
= s(g) ∧ Sd[[ob.m()]]

• Branching provides a choice according to guards or non-deterministically if both guards are true:

Sd[[b1 → ob1.m() u b2 → ob2.n()]]
def
=

s(b1) ∧ Sd[[ob1.m()]] ∨ s(b2) ∧ Sd[[ob2.n()]]

Report No. 292, February 2004 UNU-IIST, P.O. Box 3058, Macau



Formal Semantics of Sequence Diagram 12

• An iteration repeats the execution of theact, and finally terminates until the guard becomes false:

Sd[[b ∗ act]]
def
=

∃n ≥ 0∃s0, s1, · · · , sn·
(s0(b) ∧ Sd[[act]];
s1(b) ∧ Sd[[act]]; · · · ;
sn−1(b) ∧ Sd[[act]] ∧ ¬sn(b))

If the iteration never terminates, the semantics of theact can be described as follows:

Sd[[b ∗ act]]
def
= (s(b) ∧ Sd[[act]] ∧ s′(b))∗

• To destroy an object is to remove the object from the system state:

Sd[[obi.destroy()]]
def
=

s′(Ci) = s(Ci)− {obi}∧
∀c ∈ s(C) · (Link(s′, c) = Link(s, c)− {obi})

whereCi is the type class ofobi, andc is any existing object in current system state.

When a message is executed, some consistent conditions should be checked under system state. The dynamic
semantics of a message:(obi : Ci, obj : Cj , act), can be defined on a pair system(s, s′) as follows, whereact
is notcreate object action.

Let

P ¢ b ¤ Q
def
= (b ∧ P ) ∨ (¬b ∧Q)

and we denote it by

if b then P elseQ

The dynamic semantics of a message can be defined as follows:

Poss
def
=

obi ∈ s(Ci) ∧ obj ∈ s(Cj) ∧ obj ∈ Link(s, obi)

Sd[[(obi : Ci, obj : Cj , act)]]
def
=

if Poss then Sd[[act]] elsefalse

Therefore, the guardPoss here also ensures that an invocation of a method of an object by another object is
not allowed when there is no link between the two objects. This consistency condition is often violated by
designers1.

1The paper [Let al03] reported 82 percent or more people make mistakes in this aspects.
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Now let us deal with the case ofcreate action. An objectobi can create a new objectobj only whenobi has
already existed and the new objectobj must not exist in the current state. The semantics of the actioncreate
asobj = newCj() is defined as follows:

Sd[[(obi : Ci, obj : Cj , obj = newCj())]]
def
=

if obi ∈ s(Ci) ∧ obj 6∈ s(Cj) then
∃ ob 6∈ s(Cj).(ob′j = ob) ∧ s′(Cj) = s(Cj) ∪ {ob}
∧ Link(s′, obi) = Link(s, obi) ∪ {ob}

else false

5.3 Dynamic semantics of sequence diagram

The dynamic semantics of a sequence diagram can be defined as the sequential composition of the first layer
messages in its corresponding ordered structure tree discussed in Section 3. For example, the message se-
quence< msg1,msg2, · · · ,msgn > is the first layer messages from left to right of a sequence diagramSD.
The semantics ofSD can be defined as follows.

Sd[[SD]]
def
=

c1;Sd[[msg1]]; c2; · · · ; cn;Sd[[msgn]]; cn+1

wherec1, c2, · · · , cn andcn+1 are small pieces of program orskip defined in the method, which are defined
in software implementation phase. If a group of neighbor messages are in choice or iterative relations rather
than in sequence relation, we can handle the semantics similarly as the dynamic semantics definition of above
message.

For a composite messagemsgi with a sequence message< msgi.1,msgi.2, · · · ,msgi.m > at the layer below,
its semantics can be roughly defined as follows because some execution information of the method is not
provided explicitly in the sequence diagram.

Sd[[msgi]]
def
=

c1;Sd[[msgi.1]]; c2; · · · ; cm;Sd[[msgi.m]]; cm+1

However, a sequence diagram is generally invoked by an actor of the system [Lar01]. In this case, the se-
mantics can be simply defined as follows since there are not pieces programs between two system method
calls.

Sd[[SD]]
def
= Sd[[msg1]]; · · · ;Sd[[msgn]]

For example, the dynamic semantics of the sequence diagram in Figure 2 can be defined as follows.

Sd[[SD]]
def
= Sd[[: Client.getName()]] ;

Sd[[: Client.listCampaign()]] ;
Sd[[: Campaign.checkCampaignBudget()]]
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where the two messages: Client.listCampaing() and : Campaign.checkCampaignBudget() must be
executed as the following defined execution traces.

Sd[[: Client.listCampaign()]] = c1;
Sd[[b1∗ : Compaign.getCampaignDetails()]]; c2

Sd[[: Campaign.checkCampaignBudget()]] =
c3;Sd[[b2∗ : Advert.getCost()]]; c4;
Sd[[: Campaign.getOverheads()]]; c5

whereb1 andb2 two omitted Boolean expressions which are omitted in the diagram. Andc1, c2, c3, c4, andc5

are small programs of internal travail actions shown as five black pieces in the figure. They are not explicitly
described in the diagram.

6 Conclusion and Future Work

6.1 Conclusion

The most informal parts of UML are the descriptions of use cases and the links between different UML
diagrams. Reports on teaching and using UML for software development show that the majority of inconsis-
tencies are caused by the lack of a precise understanding of these issues2. For example, the report [Let al03]
at the UML 2003 Workshop on Consistency of UML shows that more than 80 percent of students on a project
making mistakes in drawing sequence diagrams which contain message passing between unlinked objects.
This paper, together with our work presented in [LLH02, LHLC03], address exactly these issues. We define
the semantics of a sequence diagram in the context of a class diagram that is also formalized. The formaliza-
tion is based on a classic computational model of transition systems that are equivalent to UML state diagrams.
The restriction of the semantic state transition system on a given object in a sequence diagram gives a state
diagram of that object. Therefore, the consistency between a sequence diagram and a given state diagram
becomes the consistency between this state diagram and the one obtained from the semantics of the sequence
diagram.

Based on this dynamic semantics, we can check whether a sequence diagram realizes a use case whose formal
specification was given in [LLH02]. Suppose thatSD1 is a sequence diagram for realizing its use caseUS
with formal specificationp ` R. Therefore, the logical relation between them can be described as follows:

(s, s′) ² (Sd[[SD1]] ⇒ p ` R)

6.2 Related work

Related work There is now a large amount of work on formalization of UML, e.g. [Are00, BMF02, BSL01,
BGHea98, EFLR98, POB02, Tsi01]. It is not easy to give a full account of comparison. However, there

2The Second author attended the UML 2003 Workshop on Consistency of UML. There were three talks, e.g. [Let al03], of this
kind.
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are mainly two kind of publications. The first is the so calledtransformational approachin which certain
UML diagrams are translated to an existing formalism, such as Z, B, VDM, CSP, Petri-Nets, PVS , etc. The
advantage of this approach is that the tools exist for the well established for reasoning after the translation.
The other approach is to directly provide formal semantic models for the UML models and then provide the
combination of the different models for consistency checking. Our work belongs to the later. We believe
that our work focus on the most informal aspects of UML that are those related to formalization of use cases
[LLH02] and the semantic combination of different UML models. We want to ensure that a conceptual class
diagram is constructed to support the realization of a certain family of use cases, and a family of interaction
diagrams is to describe of the interactions among objects of a class diagram, and a state diagram is only
defined in the context of a class diagram. Also, our approach will faithfully preserve the multi-view with
multi-notation in UML, that we believe to be its most important advantage compared to a single notational
modelling framework such as CSP, Z, VDM, etc., each of which is very natural when dealing with certain
aspects of a system, but may not be that nice for other aspects.

We have another paper [LLHL] in this volume. The difference between this paper and that one is that paper
focus on formalizing design models which include sequence diagrams in a formal design calculus presented
in [HLL02, HLL03]. It is more on the correctness and refinement of a UML design, and intends to support
model driven development by means of model transformation. This paper looks at a computational model in
details and it focus more on consistency and behavioral analysis.

Our work is not in the area of design algorithms for automatic checking of consistency of UML models or for
identifying inconsistencies of UML models, e.g. [BTY03], or development of tools for tool for consistency
management in UML-based development, such as [GEK03]. However, the semantics provided in this paper
supports formal verification of the correctness of such algorithms, and the development of such a tool.

6.3 Future work

In this paper, we have not considered concurrent execution in the sequence diagram. That means the message
passing is synchronous rather than asynchronous. For the asynchronous message passing in sequence diagram,
the corresponding semantics can be similarly defined as a concurrent processes of CSP. Meanwhile we can
also add the timing constraint mechanism into the sequence diagram. New version of UML2.0 [OMG03]
on sequence diagram will adopted in this part of our future work. Future work also includes the formal link
between a UML model of requirements and a UML design model. The former model consists of a conceptual
class diagram and a use-case model [LLH02], and the later one defined as this paper consists of a class diagram
and a family of sequence diagrams.

Acknowledgement: Many thanks to the referees’ valuable comments on this paper.
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