
Consistency Checking of UML Requirements

Xiaoshan Li
Faculty of Science and Technology
University of Macau, Macao, China

E-mail: xsl@umac.mo

Zhiming Liu and Jifeng He
International Institute for Software Technology

United Nations University, Macao, China.
E-mail: {lzm, hjf }@iist.unu.edu

Abstract

This paper discusses how to check consistency of UML
requirements model which consists of a use case model and
a conceptual class model with system constraints. Based
on a given semantics, the requirements consistency can be
defined and checked formally. The consistency among use
cases and constraints are classified into five types. A sys-
tem operation of interaction between actor and system is
formally defined as a pair of pre and post conditions. An
atomic use case is described as one system operation, and a
composed use case may be defined as several system opera-
tions described by an activity diagram. Thus, each use case
can also be modelled as a pair of pre and post conditions by
composing the pre and post conditions of system operations
by introducing a sequence composition operation. Require-
ment consistency can be logically checked based on the se-
mantics. A simple library system is used as a case study to
illustrate the feasibility of the method.

Keywords: Consistency Checking, Formal Requirement
Specification, Requirement Analysis, UML

1 Introduction

Once a requirement specification is given, an important
question to ask is whether the requirement is correct. The
activity to answer this question is called requirements val-
idation in requirements engineering [8, 17]. We are con-
cerned with two aspects about requirements correctness.
The first is that the requirements are what the customer re-
ally wants. The other is that the requirements must be con-
sistent.

Requirements consistency checking is to one part of re-
quirements validation activity. As we all know, fixing a re-
quirements error after delivery may cost up to 100 times
the cost of fixing an implementation error [8]. Although
requirements informal reviewing and prototyping are use-
ful validation techniques, however, some implicit errors and
conflicts in requirements should be checked formally based

on the system requirement specification.
Currently, UML [1] and Rational Unified Process (RUP)

[6] are widely used to model and develop software sys-
tems in software industry. Therefore, the work on how to
check the consistency of requirements which are modelled
by UML use cases and constraints, is necessary and use-
ful. The requirements consistency can be classified into five
types which include consistency of each use case itself, con-
sistency of each constraint itself, consistency of constraints,
consistency between use cases and constraints, consistency
between use cases.

As the first activity of software development process, re-
quirements engineering is to formulate the different stake-
holders’ informal needs into the formal requirements spec-
ification. Thus, it makes requirements validation difficult.
However, the conflicts should be eliminated in the final for-
mal requirements specifications. Many books on require-
ments engineering and software engineering [8, 18, 17] dis-
cussed requirements consistency checking informally using
reviewing method with conflict identification table and in-
teraction matrix. Although Heitmeyer’s paper [4] discussed
consistency checking formally, it used SCR (Software Cost
Reduction) requirements table method for specifying real-
time embedded systems. Most of consistency checking
works on UML models focus on the lower design mod-
els which are sequence diagrams and state diagrams. J. H.
Hausmann’s paper [2] used graph transformation method to
detect of conflicting functional requirements in a use case
driven approach, however, the constraint was not included.

We presented a formal model in [10, 13] that relates a
UM to a CM in the framework of Hoare and He’s Unify-
ing Theory of Programming[5]. However, the requirements
consistency problem didn’t discussed in [10]. In this paper,
the consistency among use cases and constraints are classi-
fied into five types. A system operation of interaction be-
tween actor and system is formally defined as a pair of pre
and post conditions. This comes from the method of from
B. Meyer’s ”Design by Contracts” [14, 16]. An atomic use
case is described as one system operation, and a composed
use case may be defined as several system operations de-

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

scribed by an activity diagram. Thus, each use case can
also be modelled as a pair of pre and post conditions by
composing the pre and post conditions of system operations
by introducing a sequence composition operation. Require-
ment consistency can be logically checked based on the se-
mantics. A simple library system is used as a case study to
illustrate the feasibility of the method.

A model of requirements consists of a use-case model
(UM) and a conceptual class model (CM). A UM consists
of a use case diagram and textual descriptions of use cases.
A CM for an application is a class diagram consisting of
classes (also called concepts), and associations between
classes. A class represents a set of conceptual objects and
an association determines how the objects in the associated
classes are related (or linked). A library system is used as
a case study [10] to show how the formalization in [12] for
UML conceptual model and use cases can help to improve
the use of formal methods in requirement analysis of large
scale systems, as well as to enhance the use of UML it-
self in requirement analysis with a formal semantics. The
method is expected to be usable within an incremental and
iterative development process driven by use cases [6], but
it didn’t present how to check the consistency between use
cases and constraints.

The rest of the paper is organized in the following way.
Section 2 gives a brief summary of formal model of UML
requirements [12]; Section 3 defines five types of consis-
tencies formally and discusses how to check each type of
requirements consistencies. Section 4 first gives the formal
requirements model of a library case study, and then checks
the consistencies to illustrates the feasibility of the method.
And finally Section 5 concludes the paper with some dis-
cussions.

2 Conceptual Model and Use-Case Model

The main UML models to be produced at the require-
ment analysis are a use-case model(UM) and a conceptual
model (CM). The use-case model consists of a set of use
cases, each of which describes a service that the system is
to provide for some kinds of users called actors. The use-
case model describes the functional requirements. A main
part of the CM is a conceptual class diagram (CCD) that
describes a set of concepts by class names, and how these
classes are related by associations. This section summa-
rizes the formal syntax and semantics of these modelling
notations and for details we refer the reader to [12].

We assume an infinite set O of objects, two infinite and
disjoint sets of class names CName and association names
AName, that are disjoint with O. For each A ∈ AName
there is a distinct name A−1 ∈ AName (for reverse navi-
gation), and (A−1)−1 = A. Let N denote the set of all the
natural numbers, and PN be the power set of N. And M1

and M2 are the multiplicities of an association A, with the
syntactic forms such as ∗, 1, 0..1, and 1..∗ in UML, and in
semantic level, M1 and M2 are sets such as N,{1}, {0, 1}
and N+.

Definition 1 (CCD) A conceptual class diagram is a tuple:
D = 〈C,A, �−−− 〉, where

• C is a nonempty finite subset of CName, called the
classes or concepts of the diagram D.

• A a partial function:

C −→◦ [AName −→◦ PN × PN × C]

such that A(C1)(A) = 〈M1,M2, C2〉 iff A(C2)(A−1)
= 〈M2,M1, C1〉. We use A : 〈CM1

1 , CM2
2 〉 as a short-

hand for A(C1)(A) = 〈M1,M2, C2〉, and require that
only finitely many association names defined for a pair
of class names.

• �−−− ⊆ C × C is the generalization relation between
classes, we use C1 �−−−C2 to denote (C1, C2) ∈�−−− .
We require that the generalization is acyclic.

2.1 Semantics of a CCD

A CCD models the conceptual objects and their associ-
ations in an application domain. In a given application do-
main, a class C ∈ C models a set C ⊂ O of domain objects,
and an association A ∈ AName such that A : 〈CM1

1 , CM2
2 〉

models an relation between the objects in C1 and C2, and
thus A is interpreted as a subset A of C1×C1. The general-
ization symbol �−−− is semantically defined as the superset
relation between the classes of objects, i.e. C1 ⊇ C2 if
C1 �−−− C2 and the “superseteq” relation, ⊇, between
classes is the semantics of the reflexive and transitive clo-
sure �−−− ∗ of �−−− . We say that C1 is a subclass of C2

if C2 �−−− ∗C1.
For a relation R ⊆ S1×S2, we use R(s1) for s1 in S1 (or

S2) to denote the set of elements in S2 (or S1 respectively)
that are associated with s1 by R. We use | S | to denote
the cardinality of a set S; we allow to write R(s1, s2) or
s1Rs2 to denote (s1, s2) ∈ R. The semantic denotations of
the class and association names satisfy the following condi-
tions:

1. A ⊆ C1 × C2;

2. A ◦ A−1 ⊆ Id, where ◦ is the composition operation
on relations, and Id is the identity relation;

3. C1 ⊃ C2 if C1 �−−− C2;

4. ∀c1 : C1 c2 : C2• | A(c1) |∈ M2∧ | A(c2) |∈ M1 ;

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

5. for all C1 and C2 in C, either C1 ∩ C2 = ∅ or one of
C1 and C2 is the subclass of another.

Note that Conditions 3&5 implies that as in Java, multiple
inheritance is not allowed in this formalization.

In addition to the types assigned to the names in a CCD,
we assume a collection of types of pure data values/objects
that are used as values of objects’ attributes, and a set V ar
of variable names. We write x : T for a declaration of either
a state or a logical variable x with its type T.

When the dynamic aspects of a system is considered, a
CCD represents a state of the system which is a snapshot
recording the existing objects of each class and the current
links between objects by the associations at a moment of
time. Therefore, a CCD declares

• a system state variable C for each C ∈ C that records
the set of existing objects of type C, and the type of C
is PC.

• a system state variable A for each A ∈ AName such
that A : 〈CM1

1 , CM2
2 〉 recording the current links be-

tween the existing objects recorded in C1 and C2; its
type is thus P(C1 × C2).

2.2 An object diagram is a system state

An object diagram for a CCD is a particular instance of
the pattern that is modelled by the CCD.

Definition 2 (Object Diagram) Given a CCD D, an object
diagram OD, which also called a state of D, is an evaluation
function that assigns:

• each C ∈ C a set OD[C] ∈ PC;

• each A such that A : 〈CM1
1 , CM2

2 〉 a relation OD[A] ∈
P(C1 × C2).

that satisfies the following four assertions

1. A ⊆ C1 × C2;

2. A ◦A−1 ⊆ Id, where Id is the identity relation on the
domain of A.

3. C1 ⊇ C2 if C1 �−−− C2;

4. ∀c1 : C1 c2 : C2• | A(c1) |∈ M2∧ | A(c2) |∈ M1;

5. for all C1 and C2 in C, either C1 ∩ C2 = ∅ or one of
C1 and C2 is the subclass of another.

Note that Condition 4 can be replaced by the type condi-
tion A ⊆ A, and that Condition 5 can be derived from the
type condition Condition 5 in the previous page. However,
we may prefer checking these conditions as state invari-
ants rather than type checking. We call the conjunction of
the four assertions in Definition 2 the generic invariant of
CCDs, and denote is as I.

Definition 3 (Semantics of a CCD) The semantics of a
CCD D is the set of all the states of D, denoted by ΣD

Only classes, associations, and their multiplicities are
not enough to express all the constraints that application re-
quires. We need to introduce the notion of state constraints
which are invariants of the system during its execution. In
general, a well defined state constraint on a CCD D is a
first order predicate formula with types and free variables
declared in D.

Definition 4 (CM) A CM is a pair M = 〈D, Inv〉, where
D is a CCD and Inv is the state constraint of whole system
that is well-defined on D. And we define IM

∆= I ∧ Inv.

Definition 5 (Semantics of a CM) The semantics of a CM
M = 〈D, Inv〉 is the set, denoted by ΣM , of all the object
diagrams of D that also satisfy Inv.

2.3 Use cases

In [12], an atomic use case is defined to be a parameter-
ized joint action of the following form:

Act
∆= [pvar; ovar] • Pre � Post

where Act is an action name, pvar a list of parameters typed
with classes or data types, and ovar denotes a list of typed
variables that can be modified by the action and is called
the frame of the action. We call [pvar; ovar] the signature
of the action. The precondition Pre of Act specifies the
values of the variables in the current state S of the system.
The postcondition Post of the action describes the values
of the post-state after the action is carried out.

To describe a postcondition, we introduce a primed ver-
sion x′ of each state variable x in V ar that always has the
same type as that is declared for x and represents the final
value of state variable x after an action is carried out. An
assertion P containing primed state variables (as well as
unprimed ones) is to be interpreted as a relation over pairs
(O,O′) of states of V ar such that P is true of (O,O′)
if P [O[V ar]/V ar,O′[V ar]/V ar′] holds. We sometimes
omit the frame and assume that only the variables with
their primed versions occurring in the postcondition may
be modified.

A use case may involve a number of atomic use cases.
As suggested in [12], composite use cases made up from
atomic use cases, such as sequential composition, guarded
choice, iteration and parallel composition, are defined in a
notation in [5]. These are enough to model the extend and
include relationships between uses cases in UML, and the
repetition of a sequence of actions that is not defined in use
case model of UML.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

2.4 Semantics of use cases

The semantics of a use case has to be defined under a
CM M = 〈D, Inv〉 as its environment. We only define the
semantics for an atomic use case, and the semantics for a
composite use case is defined by the semantics of the com-
positions given in [5].

Definition 6 (Well definedness) Given a use case Act
∆=

[pvar; ovar] • Pre � Post and a CM M
∆= 〈D, Inv〉. We

define WDM (Act) to be true if all the types used in the sig-
nature of Act are declared in D and all the free variables in
Pre and Post are declared in either in D or in the signature
of Act.

Definition 7 (Semantics of a use case) Given a use case
Act

∆= [pvar; ovar] • Pre � Post and a CM M
∆=

〈D, Inv〉. The semantics [[Act]]M(s,s′) of Act under M is
defined as

WDM (Act) ⇒
(Pre(s) ∧ ok ⇒ Post(s, s′)

∧

x�∈ovar

(x′ = x) ∧ ok′)

where ok is a logical state variables which represents that
the program is in a proper (i.e. an ok) state s to start the
execution of the action [5] and terminate at the state s′.

As for the different composition of use cases, it will be
defined and discuss in part of consistency between use cases
in next section.

3 Requirements Consistency Checking

Based on the formal semantics of UML requirements
model given in Section 2, requirements consistency can be
defined precisely. In this section, we will present four types
of requirements consistencies among use cases and con-
straints. By introducing the dependent degrees of use cases
and constraints, we develop a method on checking require-
ments consistency formally.

Obviously, the task of requirements consistency check-
ing is to check whether there is a conflict between two
related requirements. Traceability tables are used in [8]
to show requirement dependencies. According to UML
requirements model, we can divide dependence relation-
ships between two use cases into ”Dependency” and ”Non-
Dependency”, which are decided by the relationship of read
and write variable sets of two use cases. The definition is
given as follows.

Definition 8 The read-variable set of a use case U or an
invariant I contains these variables appearing in specifica-
tion formula, denoted as Rd(U) or Rd(I). And the write-
variable set of a use case U , denoted as Wt(U), contains of

these variables appearing in its post condition with prime,
whose values are modified when accessing the use case.

Definition 9 Two kinds of dependent relationships be-
tween two use cases U1 and U2 can be defined as follows:

Dependency : if Wt(U1) ∩ Rd(U2) �= ∅ or Wt(U2) ∩
Rd(U1) �= ∅.

Non-Dependency: if Wt(U1)∩Rd(U2) = ∅ and Wt(U2)∩
Rd(U1) = ∅.

Similarly, we can define the two kinds of impact relation-
ships between a use case U and a constraint I . A constraint
can be viewed as a query use case whose write-variable set
always is empty.

Definition 10 Two kinds of impact relationships between
a use case U and a constraint I .

Impact: if Wt(U) ∩ Rd(I) �= ∅.

Non-Impact: if Wt(U) ∩ Rd(I) = ∅.

Requirement conflicts can only happen on the use cases
and constraints with ”Dependence” and ”Impacted” cases.
The requirements consistency of UML requirements model
can be classified into five types, which are listed as follows.

1. consistency of each use case itself.

2. consistency of each constraint itself.

3. consistency of constraints.

4. consistency between use cases.

5. consistency between use cases and constraints.

For type 1 and 2, the consistency of a use case or con-
straint means that its specification should be well-defined
in syntax. That is to say, WDM (U) and WDM (I) should
be ”true” on CM M for use case U and constraint I . We
also say that a CM M is adequate for defining an atomic
use case U if WDM (U) is ”true” and Pre is satisfiable by
the state space ΣM . M is adequate for defining a composite
use case U if it is adequate for defining all the atomic use
cases of U . And each constraint I should be satisfiable, too.

Furthermore, the consistency of all constraints means
that for a CM, the system state constraint IM should be
satisfiable by the state space ΣM .
Consistency between use cases: We should check the con-
sistencies between two or more use cases when we do com-
position of use cases. Three basic kinds of compositions are
sequential, parallel or conditional choice, shown in figure 2.
UML activity diagram is used to describe the workflow of
use cases. These compositions are required by system appli-
cation business operation rules [15]. However, whether the

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

U1

U2

U1 U2

CYes No

U2(a) U1

(b)

(c)

Figure 1. Three kinds of activity compositions

compositions are allowed without any conflicts on seman-
tics, is the requirements consistency problem. If there does
not exist a pair of system states which make the composition
satisfiable, then it is a conflict. The semantics of sequence,
parallel and conditional choice compositions shown in fig-
ure 2 can be defined formally as follows.

[[U1; U2]]M(s,s′)
∆= ∃m.([[U1]]M(s,m) ∧ [[U2]]M(m,s′)

∧(Post1(s,m) ⇒ Pre2(m)))
[[U1 || U2]]M(s,s′)

∆= [[U1]]M(s,s′) ∧ [[U2]]M(s,s′)

[[If C Then U1 Else U2]]M(s,s′)
∆=

C(s) ∧ [[U1]]M(s,s′) ∨ ¬C(s) ∧ [[U2]]M(s,s′)

where use cases U1 and U2 are (Pre1 � Post1) and
(Pre2 � Post2), and

(Pre1 � Post1) || (Pre2 � Post2)
= (Pre1 ∧ Pre2 � Post1 ∧ Post2)

The above semantics model is also suitable to system op-
erations in activity diagram if U1 and U2 are system opera-
tions (activities or actions). Obviously, we have the follow-
ing theorem from above semantics of compositions;

Theorem 1 If U1 and U2 are ”Non-Dependency”, then
their sequence and parallel compositions have no consis-
tency conflicts.

Thus, we can only pay our attention to check the consis-
tency between two use cases with ”Dependency”.

Another kind consistency among two or more use cases
is that they cannot be enabled at the same time with some
particular input parameters. It means that two preconditions
can not be satisfied at that situation. It can be defined as
follows:

∃s, pvar1, pvar2 • (Pre(U1(pvar1))(s)
∧Pre(U2(pvar2))(s) = false)

Consistency between use cases and constraints: For this
type of consistency, it requires any executions of use cases
should preserve the system constraint IM . It is equivalent
to the parallel composition with the constraint that can be
considered as a query use case (operation)[14, 16] without
modifying any variables. We specify an atomic use case in
the form as follows.

Act
∆= [pvar; ovar] • (Pre � Post) || (IM � I ′

M)

where I ′
M is obtained from IM by replacing each variable

in IM by its primed version.
When a use case has an ”Impact” relationship with a con-

straint, it may possibly destroy the constraint invariant after
its execution. However, by theorem 1, the consistency of a
use case with those ‘Non-Impact‘ constraints does not need
to check.

4 Requirement Analysis and Consistency
Checking of the Library System

This section first uses the formalization to carry out the
requirement analysis for the library application, and then
check the requirements consistency formally. We intend to
illustrate the feasibility of the formalization.

4.1 Informal description of a simple library system

The simple library system is used to support the manage-
ment of loans in a university library. Librarians maintain a
catalogue of publications which are available for lending to
users. There may be many copies of the same publication.
Publications and copies may be added to and removed from
the library. Registered users can borrow the available copies
in the library. When a copy has been borrowed by a user,
it is on loan and is not available for lending to other users.
Each user can at most borrow 10 copies. When all copies of
a publication have been borrowed, users can make a reser-
vation for the publication. However, a user may not place
more than one reservation for the same publication. After a
copy is returned, it may be put back on the shelf, or alterna-
tively, held for a user who has reserved the corresponding
publication of the copy.

From above informal description of the system require-
ments, [7] identified the following use cases which should
be supported by the system.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

1. Librarian maintains the library, such as adds and re-
moves publications, copies, and users.

2. Library lends a copy to a user, and user returns a copy.

3. User makes and removes a reservation.

4.2 The specification and analysis

The relationship between the use-case model and the
conceptual model is very close in an application. On the
one hand, the identification and description of the use cases
provide important information about what should be in the
CM. From the signature of an joint action and the types of
the variables in its pre and post conditions, we can extract
the classes and their association that are needed to realize
or define the effect of the use cases. This is similar to the
technique of noun-phrase identification for the creation of a
conceptual model from a use case [9, 6].

On the other hand, the effect of a use case can only be
defined in the context of a CM in terms what objects should
be created and deleted, and which and how associations be-
tween objects including attributes of objects are changed.
We can rigorously check whether a given CM is adequate
to realize a use case, and extend the CM by adding classes
and associations or softening the state constraint to accom-
modate a use case. The CM will be extended while further
use cases are captured and defined. This provides supports
to an incremental and iterative process for the requirement
analysis.

We now specify and analyze the use cases that were iden-
tified in Section 4.1. The classes and associations can be
extracted from analyzing use case one by one and at same
time to develop a conceptual model step by step. Here we
omit it. For the details, please refer to [10]. The conceptual
diagram is shown in Figure 2, denoted by D.

User

Publication Copy

Loan

IsAvailable

Borrows

IsOn
IsHeldfor

Makes

1

0..1

1

*

*

*

1

1
* 0..1

0..1
IsCopyof

1 *

Takes

0..10

Reservation

Figure 2. Conceptual model for library system

Use case LendCopy This use case is about how the li-
brary can lend a copy of a publication to a user. Obviously,
a user u and a copy c are participants in this action, and a
loan � should be created for user u and copy c. This use
case can be formally specified as

LendCopy
∆= pvar c : Copy, u : User;

Pre : c ∈ Copy ∧ u ∈ User ∧ IsAvailable(c, u)
∧ | Takes(u) |< 10

Post : ∃� : Loan • � �∈ Loan
∧ Loan′ = Loan ∪ {�}
∧ Borrows′ = Borrows ∪ {< �, c >}
∧ Takes′ = Takes ∪ {< u, � >}
∧ IsAvailable′ = IsAvailable−

{< c, u >| u ∈ User ∧ IsAvailable(c, u)}

The four preconditions say that c and u are known by the
system, c is available to u, and the total number of loans that
user u takes is less than 10; and the post conditions assert
that a new loan is created to record the loan of c and u, and
that c becomes unavailable.

Use case AddPublication The library may add a new
publication into the system and this service is provided
by a use case called AddPublication. The use case
AddPublicaiton can be specified as:

AddPublication
∆= pvar p : Publication

Pre : p �∈ Publication
Post : Publication′ = Publication ∪ {p}

The precondition requires that p is not currently in the
library; and the postcondition asserts that the publication
has been created and that p now belongs to Publication.

Use case AddUser Similarly, we can define use case
AddUser as follows.

AddUser
∆= pvar u : User

Pre : u �∈ User
Post : User′ = User ∪ {u}

∧ IsAvailable′ = IsAvailable ∪
{< c, u >| c ∈ Copy ∧ IsAvailable(c) �= ∅}

Use case AddCopy Use case AddCopy adds a new copy
of a publication to the library after its corresponding pub-
lication has already been created. If there is not the corre-
sponding publication of the new copy, we should first call
use case AddPublication to create the publication, and
then carry out AddCopy use case. AddCopy is therefore
defined as follows:

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

AddCopy
∆= pvar c : Copy, p : Publication;

Pre : c �∈ Copy ∧ p ∈ Publication
Post : Copy′ = Copy ∪ {c}

∧ IsCopyof ′ = IsCopyof ∪ {< c, p >}
∧ IsAvailable′ = IsAvailable∪

{< c, u >| u ∈ User}

Use case MakeReservation When a user u wants to bor-
row a publication p and there is no copy of this pub-
lication available, the system allows the user to make a
reservation r on the publication p. Therefore, use case
MakeReservation introduces a new class Reservation
and two associations Makes and IsOn among classes User,
Publication and Copy. Use case MakeReservation can
be defined formally as follows.

MakeReservation
∆= pvar u : User, p : Publication;

Pre : p ∈ Publication ∧ u ∈ User
∧ ¬∃c ∈ Copy•

IsCopyof(c, p) ∧ IsAvailble(c, u)
∧ ¬∃r ∈ Reservation•

Makes(u, r) ∧ IsOn(r, p)
Post : ∃r : Reservation • (r �∈ Reservation∧

Reservation′ = Reservation ∪ {r})
∧ Makes′ = Makes ∪ {< u, r >}
∧ IsOn′ = IsOn ∪ {< r, p >}

Notice that more than one reservation can be made on
one publication, but not by the same user.

Use case ReturnCopy If a publication is reserved, a copy
of it should be held for the reservation when it is returned.
We thus need to introduce an association IsHeldfor. The
use case for returning a borrowed copy can be defined as
follows.

ReturnCopy
∆= pvar c : Copy

Pre : c ∈ Copy ∧ ∃� ∈ Loan • Borrows(�, c)
Post : Let � = Borrows−1(c) and

u = Takes−1(�) and
r = IsOn−1(IsCopyof(c)) in
Takes′ = Takes − {< u, � >}

∧ if r �= ∅ then IsHeldfor′ =
IsHeldfor ∪ {< c, choice(r) >}
else IsAvailable′ = IsAvailable

∪ {< c, u >| u ∈ User}

Use case CollectReservation When a copy is held for a
reservation, the user of the reservation will go to collect the
copy. In [7], collecting the copy held for a reservation is part
of use case LendCopy. However, we found no justification
of doing so. We prefer to introducing a separate use case for

this purpose. Of course it can be combined with LendCopy
use case in the design.

CollectReservation
∆= pvar u : User, r : Reservation

Pre : r ∈ Reservation ∧ u ∈ User
∧ ∃c ∈ Copy, p ∈ Publication•
/∗ u made the reservation r and r is on p of c */

IsHeldfor(c, r) ∧ Makes(u, r)∧
IsCopyof(c, p) ∧ IsOn(r, p)

Post : ∃� : Loan • � �∈ Loan
∧ Loan′ = Loan ∪ {�}
∧ Borrows′ = Borrows ∪ {< �, c >}
∧ Takes′ = Takes ∪ {< u, � >}
∧ Reservation′ = Reservation − {r}
∧ Makes′ = Makes − {< u, r >}
∧ IsOn′ = IsOn − {< r, p >}
∧ IsHeldfor′ = IsHeldfor − {< c, r >}

All above three use cases modify variables Reservation
and its related associations.

Use case RemoveReservation Sometimes a user or li-
brarian needs to cancel a reservation from the library. It
can be defined as follows.

RemoveReservation
∆= pvar u : User, r : Reservation

Pre : r ∈ Reservation ∧ u ∈ User ∧ Makes(u, r)
∧ ∃p ∈ Publication • IsOn(r, p)

Post : Reservation′ = Reservation − {r}
∧ Makes′ = Makes − {< u, r >}
∧ IsOn′ = IsOn − {< r, p >}
∧ IsHeldfor′ = IsHeldfor−

{< c, r >| c ∈ Copy ∧ IsHeldfor(c, r)}

Use case RemoveCopy This use case is to remove a copy
c from the library. Before accessing this service, the copy
should not be in available state. That is to say, if the
copy c is borrowed or is held for a reservation, use case
ReturnCopy or RemoveReservation should be accessed
first. The formal definition of RemoveCopy can be defined
as follows.

RemoveCopy
∆= pvar c : Copy

Pre : c ∈ Copy ∧ IsAvailable(c) �= ∅
∧ ∃p ∈ Publication• < c, p >∈ IsCopyof

Post : Copy′ = Copy − { c}
∧ IsCopyof ′ = IsCopyof − {< c, p >}
∧ IsAvailable′ = IsAvailable−

{< c, u >| u ∈ User ∧ IsAvailble(c, u)}

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

Use case RemovePublication This use case should first
call RemoveCopy to remove all the copies belong to the
publication p, and call RemoveReservation to remove all
the reservations on the publication p. The formal specifi-
cation of use case RemovePublication can be defined as
follows.

RemovePublication
∆= pvar p : Publication

Pre : p ∈ Publication
∧ IsCopyof−1(p) = ∅ ∧ IsOn−1(p) = ∅

Post : Publication′ = Publication − { p}

Use case RemoveUser This use case is to remove a user u
from the library. Similarly to use cases RemoveCopy and
RemovePublication, the precondition of RemoveUser
requires that the user should return all the copies he or
she borrowed from the library, i.e. delete all links in as-
sociation Takes. Therefore, the user should first call use
case ReturnCopy for returning all the copies and use case
RemoveReservation for cancelling all the reservations
before accessing use case RemoveUser. The definition is
given as follows.

RemoveUser
∆= pvar u : User

Pre : u ∈ User ∧ Takes(u) = ∅ ∧ Makes(u) = ∅
Post : User′ = User − {u}

∧ IsAvailable′ = IsAvailable−
{< c, u >| c ∈ Copy ∧ IsAvailable(c, u)}

4.3 Constraints on system stable states

In general the system state constraints are on associa-
tion relations, where multiplicities of associations are basic
constraints. The following eight state constraints should be
preserved under executions of use cases on system stable
states, and be conjoined into the conceptual model M of li-
brary system. For example, AddCopy use case preserves
the constraint imposed by the many-to-one multiplicities of
IsCopyof and the following property that each copy must
be a copy of a publication in the system.

(I1) Copy = IsCopyof−1(Publication)

Similarly, the other constraints are listed as follows:

(I2) a copy is either on loan or held for a reservation, or
available

Copy = IsAvailable−1(User)
∪ Borrows(Loan)
∪ IsHeldfor−1(Reservation)

We thus have if a copy is available to a user, it is then
available to any user. The association IsHeldfor is related

to association IsAvailable and Borrows by the following
invariants:

(I3) no book currently on loan IsAvailable

IsAvailable−1(User) ∩ Borrows(Loan) = ∅
(I4) a copy held for a reservation is not available

IsAvailable−1(User)∩
IsHeldfor−1(Reservation) = ∅

(I5) a copy on loan cannot be held for a reservation

Borrows(Loan)∩IsHeldfor−1(Reservation) = ∅
(I6) each user cannot borrow more than 10 copies, that is

a generic invariant of I on the multiplicity of associa-
tion Takes on Loan

∀u ∈ User• | Takes(u) |≤ 10

(I7) the copy that is held for a reservation is a copy of the
publication that is reserved

IsHeldfor ◦ IsOn ⊆ IsCopyof

(I8) every reservation made by a user must be on a publi-
cation in the library

Reservation = Makes(User) ∧
Reservation = IsOn−1(Publication)

4.4 Consistency checking of library requirements

Up to now we have given the formal requirements model
of library system with 11 use cases and 8 invariant con-
straints. Following the method of consistency checking pre-
sented in Section 3, we can check the requirements consis-
tency of library system.

Obviously, the well-definedness of use cases and con-
straints can be easily checked according to the syntax of
formal specification by analysts manually or supported by
CASE tools.

From semantic viewpoint, any use case and constraint
should be satisfiable. It means that for a use case U and
system constraint I , we can find a model s (an object di-
agram) to make Pre(s) ∧ IM (s) be true on the concep-
tual model M . For the library system, it is not difficult
to check each use case by giving a simple object diagram.
Similarly, all constraints should be satisfied under the ob-
ject diagram, system state at the same time. For example,
LendCopy(u, c) with precondition requires at the current
system state s, c is a copy, u is a registered user, c is avail-
able, and u takes the loans less than 10. Obviously, it is

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

easy to give an object diagram that makes the precondition
be ”true”. Meanwhile at current state s, all constraints I1..8

are satisfied to be ”ture”.
Here we focus on checking consistencies between two

use cases as well as preserving with constraints.

Consistency of two use cases For the library system,
we only concern about the sequence composition of two
use cases, such as whether ReturnCopy can follow
LendCopy. ReturnCopy and LendCopy are high depen-
dent. The formal definition can be defined as follows.

∀u, c • (LendCopy(u, c); ReturnCopy(c))

According to the specification of LendCopy and
ReturnCopy, we can prove that the above composition is
valid by using the method in Section 3. The proof key point
is to check whether the postcondition of LendCopy(u, c)
implies the precondition of ReturnCopy(c).

Similarly, we can check the complex sequence
compositions of MakeReservation(u, p) following by
ReturnCopy(c) and then CollectReservation(u, r) un-
der the condition of non other reservation on the publication
the p of c and user u makes the reservation r.

And LendCopy(u, c) and MakeReservation(u, p)
cannot be enabled at same time if c is a copy of p. We
can prove the following formula is valid.

¬(IsCopyof(c, p) ∧ Pre(LendCopy(u, c))
∧Pre(MakeReservation(u, p)))

where we use Pre(U) to denote the precondition of
use case U . Because Pre(LendCopy(u, c)) contains
IsAvailable(u, c) which declares that copy c is avail-
able, however, Pre(MakeReservation(u, p)) contains
¬IsAvailable(u, c), therefore, it makes the formula valid.

Consistency between use cases and constraints For the
library system, the conceptual model contains 5 classes and
7 associations which are closely related. We use LendCopy
as an example to illustrate how to check its consistency with
constraints I1..I8.

First we can give read and write variable sets of
LendCopy from its pre and post conditions.

Rd(LendCopy) = {Copy, User, Loan, Takes,
IsAvailable, Borrows}

Wt(LendCopy) = {Loan, Takes, Borrow,
IsAvailable}

Then from the read-variable sets of 8 constraints I1..8,
we can find that only 5 constraints from I2 to I6, are high-
dependent with LendCopy. Use case LendCopy preserves
the constraints means the following formula must be valid.

Pre(LendCopy(u, c)) ∧ I2 ∧ · · · ∧ I6 ⇒
Post(LendCopy(u, c)) ∧ I ′

2 ∧ · · · ∧ I ′
6

Before checking the consistency between LendCopy
and 5 related constraints one by one, we must make clear
how the use case modifies the four variables in Write-set.
From its postcondition, the following equations can be got.

E1. Loan′ = Loan ∪ {�}
E2. Borrows′ = Borrows ∪ {< �, c >}
E3. Takes′ = Takes ∪ {< u, � >}
E4. IsAvailable′ = IsAvailable−

{< c, u >| u ∈ User ∧ IsAvailable(c, u)}
Check with I2: From E1 and E2, we know that a
new object � is added to set Loan′, which is linked
to copy c, so Borrow′(Loan′) increases one more el-
ement of copy c than Borrow(Loan). But from E4,
the copy c is removed from IsAvailable−1(User) so
that IsAvailable′−1(User) decreases one element of copy
c. And IsHeldfor−1(Reservation) and Copy do not
change. Therefore, we have

Copy = IsAvailable−1(User) ∪ Borrows(Loan)
∪IsHeldfor−1(Reservation)

Copy = Copy′

IsAvailable−1(User) = IsAvailable′−1(User′)−{c}
Borrows(Loan) = Borrows′(Loan′) ∪ {c}
IsHeldfor−1(Reserva.) = IsHeldfor′−1(Reserva.′)
Copy′ = IsAvailable′−1(User′) ∪ Borrows′(Loan′)

∪IsHeldfor′−1(Reservation′)

So, Pre(LendCopy) ∧ I2 ⇒ Post(LendCopy) ∧ I ′
2

Check with I3 & I4: From above analysis of I2, obviously
we have I ′

3 and I ′4 can be guaranteed.

Check with I5: IsHeldof association does not changed
for execution LendCopy. From the precondition of
LendCopy, we know c is available in pre-state. From the
precondition of MakeReservation, we know that c is
not in IsHeldof−1(Reservation) because of all copies
held for reservation are not available. Therefore, although
Borrows′(Loan′) increases one copy c, it still makes I5

valid at the post state, i.e., I ′
5 holds.

Check with I6: From E3 equation, we can get that only
Take′(u) increases one element � for user u, and for other
user v, Takes′(v) does not change. And because one pre-
condition of LendCopy is | Takes(u) |< 10, so we have

I6 ∀u ∈ User• | Takes(u) |≤ 10
User = User′

u ∈ User∧ | Take(u) |< 10
Takes′(u) = Take(u) ∪ {�}

I ′
6 ∀u ∈ User′• | Takes′(u) |≤ 10

Similarly, we can check other use cases consistent with
the constraints from I1 to I8.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

5 Conclusion & Discussion

We have formally analyzed 5 types of consistency for
UML requirements models and developed methods for sys-
tematic checking of them. The library system is used as
a case to illustrate the feasibility of the method. An im-
portant issue in use case analysis is to identify ”conflicts”
between use cases. Conflicts can be formal identified by
checking the state invariants to see whether a newly intro-
duced use case may violate a state invariant; or to check
whether the post condition of a use case causes the precon-
dition of another use case to be false after its execution. The
formalization supports systematic and precise checking on
the consistency among use cases to rule out conflicts in the
early stage of system development.

A use case is defined in terms of its pre and post con-
ditions, where the post condition is mainly about what new
objects created, old objects deleted, new links added to as-
sociations and old links deleted from associations. In this
paper, we focus on the consistent aspects of the formal
model of requirements. As for validating the functional
aspects of requirements, we also develop a prototype gen-
erator tool which can generate prototype Java source code
automatically from this formal model of requirements [11].
Although this kind formal description of use cases and state
constraints may be not easy to understand to some require-
ment engineers without equipped discrete mathematics and
formal method training, however, it is necessary for the un-
derstanding of the functional requirements of the system
precisely, especially for consistency checking.

As for some use cases are described as the composition
of several system operations which is given in an activ-
ity diagram. We can specify each system operation as a
pair of pre and post conditions, and then compose them as
same as handling the composition of use cases in section 3.
The itself consistency of the composed use case is to check
whether its system operations can be composed in semantic
level according to the activity diagram.

Of course, Object Constraint Language (OCL) in [19]
and Simple Contract Language (SCL) in [16] can express
the assertions of contracts. Taking class names, associa-
tion names as state variables, and the conceptual class dia-
gram as a big system variable has enabled us to avoid from
introducing new semantic notions and theories for object-
oriented requirement analysis and the very classical state-
based relational semantics [5, 3] is adequate for the treat-
ment of refinement and consistency checking between use
cases in design models as well.

Future work includes evaluating the method by applying
it to requirements analysis of large practical systems.

Acknoledgement: First author thanks Dr. T. Tse from
Hong Kong University for his question on requirements
consistency when presenting [10] at COMPSAC’2001.

References

[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
elling Language User Guide. Addison-Wesley, 1999.

[2] J. Hausmann, R. Heckel, and G. Taentzer. Detection of
conflicting functional requirements in a use-case driven ap-
proach: a static analysis technique based on graph transfor-
mation. In Proc of the 24th International Conference on
Software Engineering, pages 105–115, 2002.

[3] J. He, Z. Liu, X. Li, and S. Qin. A relational model for
object-oriented designs. In Proc of the 2nd Asian Sym-
posium on Programming Language and Systems (APLAS
2004), LNCS 3302, pages 415–436, Taiwan, November
2004. Springer.

[4] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated consis-
tency checking of requirements specifications. ACM Tran-
sations on Software Engineering and Methodology, 5:231–
261, 1996.

[5] C. Hoare and J. He. Unifying theories of programming.
Prentice-Hall International, 1998.

[6] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Soft-
ware Development Process. Addison-Wesley, 1999.

[7] S. Kent. Constraint diagrams: Visualising invariants in
object-oriented models. In OOPSLA97. ACM Press, 1997.

[8] G. Kotonya and I. Sommerville. Requirements Engineering:
process and techniques. John Wiley, 1998.

[9] C. Larman. Applying UML and Patterns. Prentice-Hall In-
ternational, 2001.

[10] X. Li, Z. Liu, and J. He. Formal and use-case driven re-
quirement analysis in UML. In Proc of the 25th Annual
International Computer Software & Applications Confer-
ence (COMPSAC01), pages 215–224, Illinois, USA, Octo-
ber 2001. IEEE Computer Society.

[11] X. Li, Z. Liu, J. He, and Q. Long. Generating a prototype
from a UML model of system requirements. In Proceedings
of 1st International Conference on Distributed Computing
& Internet Technology(ICDCIT 2004), in LNCS 3347, pages
255–265, Bhubaneswar, India, December 2004. Springer.

[12] Z. Liu, J. He, and X. Li. Toward a formal use of UML
for software requirement analysis. In H. Arabnia, editor,
The Proceedings of PDPTA’2001 International Conference,
pages 27–33, Las Vegas, USA, June 2001. CSREA.

[13] Z. Liu, X. Li, and J. He. Using transition systems to unify
UML models. In C. George, editor, The Proceedings of 4th
International Conference on Formal Engineering Methods
(ICFEM2002), in LNCS 2495, pages 535–547, Shanghai,
China, October 2002. Springer-Verlag.

[14] B. Meyer. Object-oriented Software Construction (2nd Edi-
tion). Prentice Hall PTR, 1997.

[15] J. Odell. Advanced Object-Oriented Analaysis & Design
Using UML. Cambridge University Press, 1998.

[16] R. Plosch. Contracts, Scenarios and Prototypes: an Inte-
grated Approach to High Quality Software. Springer, 2004.

[17] I. Sommerville. Software Engineering (7th Edition).
Addison-Wesley, 2004.

[18] I. Sommerville and P. Sawyer. Requirements Engineering:
a good practive guide. John Wiley, 1997.

[19] J. Warmer and A. Kleppe. the Object Constraint Language:
precise modeling with UML. Addison-Wesley, 1999.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

