
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/302525817

Contract Oriented Development of Component Software

Chapter · January 2004

DOI: 10.1007/1-4020-8141-3_28

CITATIONS

27
READS

116

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Centre for Intelligent and Embedded Software, Taicang Campus, Northwest Polytechnical University View project

Formal Methods View project

Zhiming Liu - 刘志明

Northwestern Polytechnical University

215 PUBLICATIONS 2,264 CITATIONS

SEE PROFILE

Xiaoshan Li

University of Macau

88 PUBLICATIONS 1,392 CITATIONS

SEE PROFILE

All content following this page was uploaded by Zhiming Liu - 刘志明 on 16 May 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/302525817_Contract_Oriented_Development_of_Component_Software?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/302525817_Contract_Oriented_Development_of_Component_Software?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Centre-for-Intelligent-and-Embedded-Software-Taicang-Campus-Northwest-Polytechnical-University?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Formal-Methods-6?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiming-Liu-liuzhiming?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiming-Liu-liuzhiming?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Northwestern-Polytechnical-University?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiming-Liu-liuzhiming?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoshan-Li-3?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoshan-Li-3?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macau?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoshan-Li-3?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiming-Liu-liuzhiming?enrichId=rgreq-d1cea06a3057380c2037c2481a982398-XXX&enrichSource=Y292ZXJQYWdlOzMwMjUyNTgxNztBUzozNjIzNDA5NTc2MDU4OTJAMTQ2MzQwMDIyNDkwOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

CONTRACT ORIENTED DEVELOPMENT
OF COMPONENT SOFTWARE*

Zhiming Liu1,3‚ He Jifeng1,4‚ and Xiaoshan Li2

1International Institute for Software Technology‚ The United Nations University‚
Macao SAR‚ China
lzm@iist.unu.edu‚ hjf@iist.unu.edu
2Faculty of Science and Technology. The University of Macau‚ Macau
xsl@umac.mo
3Department of Computer Science‚ The University of Leicester‚ U.K.
4East China Normal University‚ Shanghai‚ China

Abstract We present a model for component software. We describe how components
are specified at the interface level‚ design level and how they are composed.
From its external view‚ a component consists a set of interfaces‚ provided to
or required from its environment. From its internal view‚ a component is an
executable code that can be coupled with other components via its interfaces.
The developer has to ensure that the specification of a component is met by
its design and implementation. We also combine component-based and object-
oriented techniques in component-based software development.

Keywords: Component‚ Contract‚ Interface‚ Object-Orientation‚ Refinement

1 Introduction
Using components to build and maintain software systems is not a new idea. How-

ever‚ it is today’s growing complexity of these systems that forces us to turn this idea
into practice [Szyperski‚ 2002‚ Cheesman and Daniels‚ 2001‚ Heineman and Coun-
cill‚ 2001]. While component technologies such as COM‚ CORBA‚ and Enterprise
JavaBeans are widely used‚ there is so far no agreement on standard technologies
for designing and creating components‚ nor on methods for composing them. Find-
ing appropriate formal approaches for specifying components‚ the architectures for
composing them‚ and the methods for component-based software construction‚ is cor-
respondingly challenging. In this paper‚ we consider a contract-oriented approach to
the specification‚ design and composition of components. Component specification is

* This work is partly supported by the research grant 02104 MoE and the 973 project 2002CB312000 of
MoST of P.R.China.

350

essential as it is impossible to manage change, substitution and composition of com-
ponents if components have not been properly specified.

When we specify a component, it is important to separate different views about the
component. From its user’s (i.e. external) point of view, a component P consists a set
of provided services [Szyperski, 2002]. The syntactic specification of the provided ser-
vices is described by an interface, defining the operations that the component provides
with their signatures are. This is also called the syntactic specification of a component,
such as COM and CORBA that use IDL, and JavaBeans that uses Java Programming
Language to specify component interfaces. Such a syntactic specification of a com-
ponent does not provide any information about the effect, i.e. the functionality of
invoking an operation of a component or the behavior, i.e. the temporal order of the
interface operations, of the component.

For the functional specification of the operations in an interface, it is however
necessary to know the conceptual state of the component. Consequently, the inter-
face specification contains a so-called information model [Cheesman and Daniels,
2001, Filipe, 2002]. In the context of such a model, we specify an operation by a
design in Hoare and He’s Unifying Theories of Programming (UTP)
[Hoare and He, 1998] that is seen as a contract between the component and its client
[Cheesman and Daniels, 2001, Heineman and Council, 2001]. This definition of a
contract also agrees with that of [Meyer, 1992, Meyer, 1997]. To use the service a
client has to ensure the pre-condition and when this is true the component must
guarantee the post-condition Q. We then define a contract of an interface by associ-
ating the interface with a set of features that we will call fields and assigning each a
design to each interface operation The types of the fields are given in
a data/class model.

The contract for the provided interface of a component allows the user to check
whether the component provides the services required by other components in the
system, without the need to know the design and implementation of the component.
It also commits (or requires) the designers of the component who have to design the
component’s provided services. A designer of the component under consideration
(CuC) may decide to use services provided by other components. These services
are called required services [Szyperski, 2002] of CuC. Components that provide the
required services of CuC can be built by another team or bought as a component-off-
the-self (COTS). To use a component to assemble a system, one needs to know the
specifications of both its provided and required services.

We will specify the design of a component by giving each operation in the pro-
vided interface a program specification text in the object-oriented specifi-
cation language (OOL) defined in [Liu et al., 2004c]. In calls to operations
in a required interface are allowed. With the refinement calculus of object-oriented de-
signs (RCOOD) in OOL [He et al., 2002, Liu et al., 2004b], we can verify whether

refines the specification of given in a contract of the provided interface.
The verifier of a component needs to know the contracts of the provided interfaces, the
contracts of the required interfaces, and the specification text for each operation of
the provided interface. We can thus understand a component as a relation between con-
tracts of the required interfaces and contracts of the provided interface: given a con-

351

tract for each required interface, we can calculate a design of an from
and check whether it conforms to the specification defined by the con-
tract of the provided interface. A design of a component can be further refined into
an implementation by refining the data/class model and then operation specifications

A component assumes an architectural context defined by its interfaces. We con-
nect or compose two components and by linking the operations in the provided
interface of one component to the matching operations of a required interface of an-
other. For this, we have to check whether the provided interface of one component
contains the operations of a required interface of another component and whether
the contract of the provided interface of meets the contract of the required interface
of If and match well, the composition forms another component.
The provided interface of is the merge of the provided interfaces of and
The required interfaces of are the union of required interfaces of and
excluding (by hiding) the matched interfaces of and For defining composition,
interfaces can be hidden and renamed.

A component is also replaceable, meaning that the developer can replace one com-
ponent with another, may be better, as long as the new one provides and requests the
same services. An component is better than another if it can provide more services,
i.e. the contracts for its provided interfaces refine those of the other, with the same
required services. Component replaceability is based on the notion of component re-
finement.

As a starting point, we only deal with the functional/service specification of com-
ponents and deals with functional compatibility. In Section 5, we give a discussion
on the alternative ways to deal with behavioral specification and compatibility. This
paper is not about development processes either. However, we will give an overview
on how the model can be used in a component-based development together with an
object-oriented implementation.

2 Interfaces
An interface I is a set of operation (or method) signatures, of the form op(in :

out : inout : where is the name of the operation, are the
value parameters of types the result parameters of types and the value-
result parameters of types An interface can be specified as a family of operation
signatures in the following format:

Figure 1 shows the ParcelCall system in [Filipe‚ 2002] that has three main compo-
nents:

a Mobile Logistic Server (MLS): is an exchange point or a transport unit (con-
tainer‚ trailer‚ freight wagon‚ etc). It always knows its current location via the
GPS satellite positioning system.

352

a Goods Tracing Server (GTS): keeps track of all the parcels registered in the
ParcelCall system. GTS is also the component which is integrated with the
legacy systems of transport or logistic companies.

a Goods Information Server (GIS): is the component which interacts with the
customers and provides the authorized customers the current location of their
parcel, keeps them informed in case of delivery delays, etc.

In Figure 1, UML notation for interfaces and components is used.The provided inter-
face of GIS component will establish communication with the customer: for instance
a customer can request for finding the current location of a parcel via LocateParcel.
The specification of this interface can be described as follows, where we use to
denote the powerset of a set

Merge interfaces
It is often the case that there are a number of components, each providing a part of

the operations in the required interface of another component. We thus need to merge
these components to provide one single interface to match the interface required by
the other component.

Two interfaces and are composable provided that every operation name in
both and must be assigned the same signature. This condition is not too re-
strictive as to use a component designed for an application in another or specialize a
generic component for a special application, renaming or adding a connector compo-
nent [Allen and Garlan, 1997, Selic, 1998] can be used to customize the component.

DEFINITION 1 Let be a finite family of composable interfaces.

Their merge is defined by

3 Contracts
Only a syntactic specification of its interface is not enough for the use or the design

of a component. We also need to specify the effect, i.e. the functionality, of invoking

353

an interface operation. This requires one to associate the interface to a conceptual
state space, and a specification of how the states are changed by the operation under
certain pre-conditions. We view such a functional specification of an interface as a
contract between the component client and the component developer. The contract is
the specification of the component that the developer has to implement. The contract
is also between a user of the component and a provider of an implementation of the
interface: the component has to provide the services promised by the specification
provided that the user uses the component according to the precondition [Szyperski,
2002].

Conceptual model
To define the conceptual state space of a contract for an interface and the types for

the parameters of the interface operations, we assume that a type is either a primitive
data type (such as the integers, the Booleans, etc.) or a class of objects (such as a
Java class). This allows our framework to support both imperative and object-oriented
programming in the design of a component.

The type definitions in fact form a conceptual class diagram [Liu et al., 2003, Liu
et al., 2004c] that is a UML class diagram in which the classes have no methods and
the associations have no direction of visibility or navigation. Figure 2 is an example
of a conceptual model for a library system. A UML class diagram can be specified
by a class declaration section of an object-oriented program in the object-oriented
specification language (OOL) developed in [Liu et al., 2004b, Liu et al., 2004c] of the
form

where each is of the form

where

N and M are distinct names of classes, and M is called the direct superclass of
N.

The public declaration declares the public attributes of the class and their types.
Initial values are set when an object is created.

Notice that we do not declare methods for the classes as they will be given in the imple-
mentation of the component. Also, we need to declare the public fields as functional
specification of operations directly refer to them. In the design model of a component,
methods are introduced to realize the specification and then data encapsulation can be
applied to make the fields private or protected.

354

Consider the simple conceptual class diagram in Figure 2 as an example. It is
specified as

Please see [Liu et al., 2003, Liu et al., 2004b] for details on the formalization of UML,
and [Liu et al., 2004c] for the semantics of class declarations.

Contract
Given an interface I, a conceptual model M, a set A of variable declarations of the

form T where T is either a primitive type or a class declared in M, called the type of
we define the alphabet as the union of sets of the variables, the input and output

parameters of the operations of I.

A conceptual state for is a well-typed mapping from the variables to their
value spaces. It is in fact a UML object diagram of M plus values of variables in
of primitive types that is a snapshot of the models consisting the current objects of
the classes and links by the associations among these objects, as well as the values
of variables of primitive types. A change of such a state is carried out by creating
or destroying existing objects, forming or breaking links among objects, modifying
values of object attributes, and changing values of some variables of primitive types.
A specification of an operation in an alphabet

is a framed design where

a subset of is the frame of D containing the variables to be changed by
D.

is a design [Hoare and He, 1998] describing the behavior of the
method:

355

Predicate is the assumption on the variables and input parameters which the
method can rely on when it is activated, while predicate Q is the commitment
which must be true when the execution terminates. and are used to
describe the termination behavior of We will omit the frames in the examples
by assuming that a design only changes those variables whose primed versions
appear are mentioned.

The variables of are used to record the values of the variables in A and input
parameters on the activation of and the variables of the values of the cor-
responding variables and outgoing parameters on the termination of a method. For
the conceptual model in Figure 2, let

where is the power set of S. The operation RecordCopy() that records a new
copy of a given publication can be specified as

DEFINITION 2 A contract is a tuple C = (I, M, A, MSpec, Init) where I is an
interface, M is a conceptual model, A is a set of variables, called the fields of C,
whose types are either declared in M or as primitive types, and MSpec a function that
maps each operation of I to a specification, and Init an initial condition that defines
some values to fields as their initial values.

If no field is of an object type, we will omit the conceptual model from the specification
of a contract.

In modular programming, a primitive contract is a specification of a module that
defines the behavior of the operations in its interface. However, later we will see that
contracts can be merged to form another contract and this corresponds to the merge of
a number of modules. In object-orient programming, a primitive contract specifies an
initialized class, i.e. an object, whose public methods are operations in the interface.
This class wraps the classes in the conceptual model M, and provides the interface
operations to the environment. In the Java-like OOL [Liu et al., 2004c], such a contract
can be specified as

where main provides the condition Init when creating the new object of C attached
to with the initial values of the attributes in A (see Section 4.1 for this command and
[?, Liu et al., 2004c] for its semantics).

356

Example A contract for interface CustomerService of ParcelCall assigns a speci-
fication to each method and can be written as follows, where MSpec(op) is given as
the specification following the name op of each operation. We present a contract in a
style such that the name of the interface is followed by the fields declarations, then the
initial condition, and finally the operations with their specifications:

Merge and refinement
Contracts of interfaces can be merged only when their interfaces are composable

and the specifications of the common methods are consistent. This merge will be used
to calculate the provided and required services when components are composed.

DEFINITION 3 Contracts are consistent if

1

2

3

4

and are composable.

If is declared in both and it has the same type; and

Any class name C in both and has the same class declaration in them.

This definition can be extended to a finite family of contracts.

DEFINITION 4 Let be a consistent finite
family of contracts. Their merge, (denoted by is defined by

where denotes the overriding operator, e.g.
if if but otherwise.

A merge of a family of contracts corresponds the construction of a conceptual
model from the partial models of the application domain in the contracts. There are
three cases about the partial models:

for all

357

The contracts do not share any fields or modelling elements in their conceptual
models. In this case, the system formed by the components of these contracts are
most loosely coupled. All communications are via method invocations. Such
a system is easy to design and maintain. Composing these components is only
plug-in composition.

The contracts may share fields, but their conceptual models do not share any
common model elements. In this case, application domain is partitioned by the
conceptual models of these contracts. And components of the system are also
quite loosely coupled and easy to construct and maintain. When composing
these components, some simple wiring is needed.

The contracts share common model elements in their conceptual models. The
refinement/design of the contracts has to preserve the consistency and integrity,
generally specified by state invariants, of the model. The more elements they
share, the more tightly the components are coupled and the more wiring is
needed when composing these components.

1

2

3

DEFINITION 5 We say that a contract is (down-
wards) refined by denoted by if there
is a mapping from to satisfying

The initial state is preserved: where
is the list of variables defined in and the list of variables in Notice

that we have used a UTP design to represent a refinement mapping.

The behavior of the operations of are preserved: every operation declared
in is also declared in and

1

2

An upwards refinement relation can be similar defined in terms of a refinement map-
ping from to

The refinement relation between contracts will be used to define component re-
finement. The state mapping allows that a component developed in an application
domain can be used in another application domain if such a mapping can be found.

THEOREM 6 Contract refinement enjoys the properties of program refinement.

is reflexive and transitive and a pre-order.

(An upper bound condition) The merge of a family of contracts refines any
contract in the family, i.e. be a family of consistent contracts,

for any

1

2

3

We define the equivalence relation by

(An isotonicity condition) The refinement relation is preserved by the merge
operation on contracts, i.e. let be families of consistent
contracts without shared fields. If ¢ for all then

358

4 Component
A component consists of a provided interface and optionally a required interface,

and an executable code which can be coupled to the codes of other components via
their interfaces.

The external behavior of a component is specified by the contracts of its interfaces.
A design of a component has to reorganize the data to realize the conceptual states, and
realize the conceptual models in the contract of the component by software classes.
That is the conceptual model has to be transformed into a design model.

Design class model
We slightly generalize the definition of a contract to allow the declarations of meth-

ods in the class model that is now called a design class model, which is specified as a
sequence of class declarations each is of the form defined in OOL:

where parameter is of the form
consisting of the value, result and value-result parameters of of method is a
command called the body of We use Meth(M) to denote the set of all methods
declared in a design model M.

A command is specified according to the following syntax:

where is a Boolean expression, is an expression, and is an expression which may
appear on the left hand side of an assignment and is of the form
where a simple variable and is an attribute of an object. We use

to denote the multiple choice statement.
Expressions, which can appear on the right hand sides of assignments, are con-

structed according to the rules is where null
represents the special object of the special class Null that is a subclass of all class and
has null as its unique object, is the of is the type casting, is C
is the type test.

Components
DEFINITION 7 A component P is a tuple < O, I, M, A, MImpl, Init, R >
where

359

O is an interface, called the provided or (output) interface of P.

I is an interface disjoint from O, called the internal interface of P

M is a design class model.

A is a set of fields whose types are all declared in M.

MImpl maps each operation declared in to a pair where Q is a
command written in the above OOL, and is the alphabet obtained from A and
the input and output parameters of the operations in

R, is the interface that is disjoint from O and I and consists of the oper-
ations (not methods of classes in M) which are referenced in the program
text and bodies of methods in Meth(M) but not in where

R is called the input or required interface of P.

We call C = (O, I, M, A, MImpl, Init) a generalized contract, as it has internal oper-
ations and MImpl provides the specification of each operation of O in terms a general
OOL command.

Hence, we will use 4-tuple P = (C, I, O, R) denote a component, where C is a
generalized contract for the interface

A contract for R is called a required service of P, and a contract of the interface O
a provided service. Operations in R can be seen as holes in the component where their
specifications or implementation given in other components that are to be plugged
in. Therefore, the provided services of a component depends on its required services
plugged in from other components. This leads to the definition of our semantics of a
component.

In the above definition, we introduced private operations so that we can hide an
output operation by making it a private operation. This will keep the definition MImpl
valid as the hidden operations may be called in

Method hiding
Hiding interface operations allows to offer different services to different clients.

DEFINITION 8 (Hiding) Let C = (O, I, A, M, MImpl, Init) be a general con-
tract, and a set of operations. The notation C\H represents the contract

where is set-subtraction.

THEOREM 9 The hiding operator enjoys the following properties.

1

2

3

4

5

where I is the interface of C.

360

Semantics components
DEFINITION 10 The semantics of a component P is identified as a binary relation
between its required services and their corresponding provided services

where the variable takes an arbitrary required service as its value, takes a
provided service for O, and the notation denotes the provided service

where F(M) is the class model obtained from M by removing the methods of its
classes, and mapping MSpec is defined from the given required service

by the recursive equations where replaces every
call of with the actual input parameters inexp, output parameters
outvar and value-result parameters vrexp of O by its corresponding specification.

Notice that when a component P has an empty set of required interface operations,
P is a closed component and the notation becomes a constant that is the
semantics of the closed program P.

For a given contract for the required interface of P, is a closed
component. Let be a contract of the provided interface of P which serves as the
specification of the component. We say that P correctly realizes or implements
with a given required service if

In a modular programming paradigm, a component can be designed and imple-
mented as a module in which each of the operations in the output interface is “pro-
grammed” using procedures or functions that are defined either locally in the module
or externally in other modules. In this case, the external modules that the component
calls methods from must be declared, as well as the types of the attribute values and
parameters of its methods. Therefore, a component is in fact not a single module, but
an artifact that contains all these declared types and modules. In an object-oriented

361

paradigm, such as Java, a component can be seen as a class that implements the inter-
faces in O:

Thus, after adding the notation for interfaces and contracts to OOL in [Liu et al.,
2004b, Liu et al., 2004c], the extended language provides a formal model for compo-
nents and the calculus of contract refinement and component refinements [He et al.,
2003], and also extends RCOOD in [He et al., 2002, Liu et al., 2004b] to for component-
based development.

Example Now we define a component GIS in the ParcelCall system to provide the
services to customers. We will use some Java conventions in writing the specification,
such as assignment to a variable with a method call that has an out parameter.

We can calculate ParcelInfo >> We have kept the attribute loc :
PName Position to avoid from defining a state mapping in the proof of the
refinement. In the following part of the example, we provide a definition of com-

362

ponent GTS to implement the contract ParcelInfo, that need the specification of a
design class.

Define the refinement mapping from the attributes of Parcel to those of ParcelInfo:

Then

Refinement and composition of components
For a component P with provided and required interfaces O and R, the semantics

is a binary relation between the input services and output services.

THEOREM 11 (Monotonitity and Upwards Closure [Smyth, 1978]) Let P =<
C, I, O, R > and and are the refinement relations among contracts of R and
among contracts of O respectively. Then where denotes
relational composition.

Thus, for any required services and provided services then

A component is a refinement of a component denoted by if is a
sub-relation of

DEFINITION 12 Component is a refinement of if

refines iff for any required service

We therefore have when refines then for any given required service and
a contract a provided service as the specification, realizes with if
realizes with

DEFINITION 13 Let be two components with contracts
for Assume that and

The composition is defined to merge their contracts, output

interfaces and input interfaces, and to remove those input interfaces of each component
that are matched by the output interfaces in another:

363

Let and The composition of
and is defined by

This definition allows an output interface and thus part of provided service of one
component to be shared among a number other components. Hiding can be used to
internalize the part of a provided service of one component that is used in another
component:

Example We can now compose GIS and GTS. (GIS||GTS)\IParcelInfo. If
we do not consider the relation between GTS with other components of the Parcel-
Call system, this composite component is a closed system that only provides services
according to the contract of CS, but it does not have any required interface. How-
ever, to complete the ParcelCall system, we can add a required service interface to
get the new location of a parcel from the Mobile Logistic Server component MLS.
Alternatively, we add another provided interface ChangLoc() that will be needed as a
required interface of Mobile Logistic Server component MLS to update the location
of a parcel.

Client-server systems are often seen as applications in component software. The
architecture of such a system is organized as a layered structure and can be model with
in our model as shown in the full paper [Liu et al., 2004a].

5 Conclusion
We have proposed a model for software components and defined composition and

refinement of components. This allows us to use the existing calculus in [Hoare and
He, 1998, Liu et al., 2004b, Liu et al., 2004c] to reason about and refine components.
We have separated the different views about a component. The different views are
specified at different levels of abstraction. A component is constructed to provide cer-
tain services and these services are specified in terms of the component’s interface and
contract. This specification is taken as the requirement specification of the component.
The designer of the component has to design and implement the component to satisfy
this requirement specification. A design can be specified in the object-oriented spec-
ification notation developed in, that supports incremental and step-wise construction
of a component [Liu et al., 2004b, Liu et al., 2004c]. Merge and hiding of interfaces
for components add more support to incremental construction of component software
as well as to restrict the use of some services by certain users.

364

When composing components, one has to check the matchability of the provided
services of one component with the specification of the required services of another,
both syntactically and semantically. The syntactic check is only to check the signature
of the interface methods. The semantic check is to ensure that the provided service
of one component does ensure the service required by another component. This is to
check the pre and post conditions of in the specification of the services.

Points of discussion The model of components is simplified in the sense that be-
havior or protocols of the interfaces are not described. There are several possible ways
to address the problem of protocols. First, we can introduce control state variables in
contracts and thus in components. This will allow us to define a contract as a state
machine or statechart, e.g. [Selic, 1998, Wirsing and Broy, 2000]. Then when two
components are composed, deadlock freedom needs to be verified and this is not an
easy task. Second, in addition to the state information, we can add a CSP-like spec-
ification of the order of the methods in a component, e.g. [Allen and Garlan, 1997].
Again, matching between protocols in different components has to be checked and
deadlock needs to be avoided. As we know from the model of CSP, this is not a triv-
ial task either. We would like to propose a weak approach in which protocols of the
provided interface and required interface of a component are described independently
in terms of regular languages on the method names of the interfaces. To check the
matchability between a provided interface with a required interface is then to check
the provided interface protocol is a subset of the required interface protocol in terms
of the regular languages that are defined for the protocols, and this can be automated.

Related work There is much work on the definitions of software components. We
take the informal views of [Cheesman and Daniels, 2001, Szyperski, 2002] that a
component both provides to and requires services from other components. We used
the notion of contract for formal specification of provided and required services, A
contract here is similar to that of Meyer [Meyer, 1992]. However, we have provided
the notion of composition and there is a standard calculus for reason about and refine
components at different levels of abstracts. A distinctive nature of our framework is
the natural link of the component contract specification and its object-oriented imple-
mentation.

A contract in [Helm et al., 1990] models the collaboration and behavioral rela-
tionships between objects. In our approach, we provide the separation between the
specification of a contract for an interface from the specification of the behavior of the
component that realizes the contract. A contract in [Andrade and J.L.Fiadeiro, 1999]
describes the coordinations among a number of partners (i.e. components or objects).
Its main purpose is to support system architectural evolution and to deal with changes
in business rules of the system application. Our contracts here specify the services of
components while we treat interaction and coordinations as part of the implementation
of the components. Our aim is to support construction of software components and
component software systems.

Acknowledgement We thank the referees for their careful review and constructive
and helpful comments. We also thank our colleague Dang Van Hung for his comments
on the earlier version of the paper.

365

References
[Allen and Garlan, 1997] Allen, R. and Garlan, D. (1997). A formal basis for architectural

connection. ACM Transactions on Software Engineering and Methodology, 6(3).
[Andrade and J.L.Fiadeiro, 1999] Andrade, L. F. and J.L.Fiadeiro (1999). Interconnecting ob-

jects via contracts. In France, R. and Rumpe, B., editors, UML’99 - Beyond the Standard,
LNCS1723. Springer-Verlag.

[Cheesman and Daniels, 2001] Cheesman, J. and Daniels, J. (2001). UML Components. Com-
ponent Software Series. Addison-Wesley.

[Filipe, 2002] Filipe, J. (2002). A logic-based formalization for component specification. Jour-
nal of Object Technology, 1(3):231–248.

[He et al., 2002] He, J., Liu, Z., and Li, X. (2002). Towards a refinement calculus for object-
oriented systems (keynote talk). In Proc. ICCI02, August 19-20, 2002, Alberta, Canada.

[He et al., 2003] He, J., Liu, Z., and Li, X. (2003). Component calculus. In Dang, V. and Liu,
Z., editors, Proc. Proc. Workshop on Formal Aspects of Component Software (FACS’03),
Satellite Workshop of FME2003, Pisa, Italy, 8-9 September, 2003. UNU/IIST Report No
284, UNU/IIST, P.O. Box 3058, Macao.

[Heineman and Councill, 2001] Heineman, G. and Councill, W. (2001). Component-Based
Software Engineering, Putting the Pieces Together. Addison-Wesley.

[Helm et al., 1990] Helm, R., Holland, I., and Gangopadhyay, D. (1990). Contracts: Specify-
ing behavioral compositions in object-oriented systems. In Proc. OOPSLA’90/ECOOP’90,
pages 169–180. ACM.

[Hoare and He, 1998] Hoare, C. and He, J. (1998). Unifying theories of programming.
Prentice-Hall International.

[Liu et al., 2004a] Liu, Z., He, J., and Li, X. (2004a). Contract-oriented com-
ponent software development. Technical Report UNU/IIST, Report No 298.
http://www.iist.unu.edu/newrh/III/1/page.html.

[Liu et al., 2004b] Liu, Z., He, J., and Li, X. (2004b). Integrating and refining UML models.
Technical Report UNU/IIST Report No 295, http://www.iist.unu.edu/newrh/III/1/page.html,
UNU/IIST, P.O. Box 3058, Macao. Submitted for publication.

[Liu et al., 2003] Liu, Z., He, J., Li, X., and Chen, Y. (2003). A relational model for object-
oriented requirement analysis in UML. Technical Report UNU/IIST, Report No 287. Proc.
ICFEM03, 5-7 November, 2003, Singapore. Lecture Notes in Computer Science.

[Liu et al., 2004c] Liu, Z., He, J., Li, X., and Liu, J. (2004c). Unifying views of UML.
Technical Report UNU/IIST Report No 288, http://www.iist.unu.edu/newrh/III/1/page.html,
UNU/IIST, P.O. Box 3058, Macao. Presented at <<UML>> 2003 Workshop on Composi-
tional Verification of UML, 21 October 2003, SF, USA. To appear in ENTCS.

[Meyer, 1992] Meyer, B. (1992). Applying design by contract. IEEE Computer.
[Meyer, 1997] Meyer, B. (1997). Object-oriented Software Construction (2nd Edition). Pren-

tice Hall PTR.
[Selic, 1998] Selic, B. (1998). Using UML for modelling complex real-time systems. In

Mueller, F. and Bestavros, A., editors, Language Compilers, and Tools for Embedded Sys-
tems, LNCS 1474, pages 250–262. Springer.

[Smyth, 1978] Smyth, M. (1978). Powerdomain. Journal of Computer Science and System
Sciences, 16:23–36.

[Szyperski, 2002] Szyperski, C. (2002). Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley.

[Wirsing and Broy, 2000] Wirsing, M. and Broy, M. (2000). Algebraic state machines. In
Rus, T., editor, Proc. 8th Internat. Conf. Algebraic Methodology and Software Technology,
AMAST 2000. LNCS 1816, pages 89–118. Springer.

View publication statsView publication stats

https://www.researchgate.net/publication/302525817

