
Linking Heterogeneous Models for
Intelligent-Cyber-Physical Systems

Zhiming Liu

Centre for Research & Innovation in Software Engineering (RISE)

Southwest University, Chongqing, China

zhimingliu88@swu.edu.cn

http://computer.swu.edu.cn/zhimingliu/

@,Dagstuhl Seminar, Germany. November 12-15, 2017, Germany

Model, Thing & Theory of Models
§ Modelling: The model, thing being modelled, modelling

paradigm
§ Modelling theory: support abstraction & refinement,

rigorous analysis, verification and manipulation of models
§ The thing are often modelled from different viewpoints

o Orthogonal or but often interrelated
o Different viewpoints maybe modelled different with

different notations and paradigms
o Models of different views of the thing need to be

integrated to form a “whole” model of the thing
§ Modelling Languages: describe models
§ Specification Languages: describe properties of models
§ SL and ML can be the same, e.g. TLA

Models for Separation of Concerns
§ Event-Based – Trace Models:

§ CCS and CPS-like languages abstract data away
§ Automata-based models (I/O automata)

§ Data State-Based with an Operational semantic Model
§ TLA, Action Systems, B , Alloy - State Transition Systems
§ They are also declarative

§ Declarative and State-Based: VDM, Z, JML (Hoare-Logic Based)
§ Combination:

§ Value-passing CCS and CSP (limited)
§ Occam
§ Labelled Transition Systems

§ Multi-view modelling: UML-like, Simulink, rCOS
§ Timing model for scheduling

CPS
§ A CPS combines a cyber side with a physical side.
§ Cyber side – computing and networking
§ Physical side - mechanical, electrical, and chemical

processes
§ The cyber components control the physical side using

sensors and actuators, as well as providing services to
users

§ Sensors and actuators are interfaces that
observe/sense the physical system and actuate the
controls

§ Human actors – involve human-machine interaction
§ CPS include IoT, Data Centres and M2M

Battery	pack

…

ce
ll

Capacitor	group

…

Battery	management	
core	module

…

Interface	module
Controller	area	network

Controller	area	network

Battery	Management	System

Traction	
inverter

Battery	
charger

Vehicle	
controller

Sensors

BMS	as		CPS

Battery	management	
core	module

Battery	management	
core	module

ce
ll

ce
ll …

ce
ll

Capacitor	group

ce
ll

ce
ll …

ce
ll

Capacitor	group

ce
ll

ce
ll

CPS Based BMS

Architecture：
Ø Multilevel CPS

Ø Dynamic evolution
architecture

Ø Adaptive
components

Ø Interface based

interconnection

Solution:
Ø Refer to experience

Ø Use CPS architecture
Ø Unified standard

management
Ø employ data from

multidimensional

A
p

p
licatio

n
Layer

C
o

llab
o

ratio
n

Layer
N

etw
o

rk
Layer

P
h

ysical
Layer

Potential
risk prediction

Intelligent
(dis)charging

Battery life
analysis

and evaluation

Charging
state analysis

Other
potential apps

Cloud
platform

Historical data
storage system

l Big data analytics
l Dynamic evolution
l Intelligent decision
l Pattern matching

Remote
monitoring

system

Test & evaluation
system

Application	
interface	protocol

Data	interconnection	
interface	protocol

Mobile
communication

network Internet
Industrial
network

Car BMS

Capacitor Battery Battery	pack Electric	car Driver

BigData- Where from, What for & Why 4Vs

• Through sensors, “things” are virtualized as data in
order to be identified and shared/transmitted

• Dynamically used in and drive the evolution of CPS, as
well as processed as historic data

• The value of data as virtualisation of things is to
create views from separate data sources

• Views implemented as APIs, and further linked to
realise business processes and workflows

• BigData are an integrate part of CPS and used to
develop value added services and drive system’s
evolving behavior

BigData are an Integrated Part of CPS

§ IoT Layer－Embedded Software, Drivers and OS in sensors and
devices

§ Computation & Coordination Layer－bigdata processing and
analytics, databases, control/monitoring/coordinating software

§ Application Layer－ Apps、web/cloud services、business &
workflow managements

§ Network layer－communication protocols、network
infrastructure & resources management and scheduling (SDN)

§ Involve different software architecture styles and technologies:
OOA, SOA, CBA, MDA, AI

Software (Paradigms) in CPS

Need seamless integration of architecture styles and technologies

• Knowledge reasoning, as well as data analytics, is
involved in
create views – smart service
decision making in business processes and workflows
intelligent control – monitor, analyse, plan and execute
dynamic service discovery and binding – Evolving SOA.

• Computer vision and Natural Language Processing in
human-machine interaction (HMI), and
removing the barrier to software requirements elicitation,
analysis, formalisation, and prototyping.

• Robots are obviously in CPS.

AI in CPS

End-to-End Modelling & Verification AI Components &
Composition of AI and Non-AI Components

Evolving Architecture
CPSs cannot be built from scratch, but they are ever evolving

1. Develop new components and plug into the system
2. Dynamically find and connect components
3. Adding more interfaces and/or improving performance of

interface, as to allow cyber components to
1) sense more and better about its environment
2) make more intelligent control decisions, and provide smarter

services
3) control and coordinate more and better physical components

4. With 1&2 to “connect” what were originally separated
components to allows them to interact, collaborate and
coordinate

5. With more and better connectors, coordinators, interfaces
to improve trustworthiness
How RV Can Contribute to Healthy/Safe Evolution &

Can RV Algorithms Evolve?

Challenges
§ Requirements

– Cope with changes and uncertainties: both during
development and at runtime

– The relation between performance and functionalities
§ Handling evolving architecture with heterogeneous

components of mixed criticality
– Dynamic component plug in and play (composability)
– dynamic discovery and binding services and components,

(evolving SOA)
– Predictability, safety, security, robust, self-organising , self-

adaptive.

§ Verification of AI Components and Composition of
non-learning and learning components

A Proposed Position

§ Taking an existing CPS ecosystem as the infrastructure,
develop and integrate CPS components and Services

§ A combined component-based and service oriented
design and evolution
– System architecture is horizontally component-based and

vertically service-oriented
– Develop new layer of services, monitoring and control

(SOA)
– Refine/evolve existing layer of coordination, monitoring

and control
§ Combining different modelling paradigms (for different

concerns of design and verification), including AI
paradigms

Objectives/Vision

§ A model-driven approach to Contract-Based CPS
Component Design, integration and Evolution
1) Seamlessly and coherently combination of the various

dimensions of the multi-scale design space - behavior, QoS,
space and time

2) Unifying semantic theories of different modelling paradigms
3) Linked techniques and tool support for integration different

development paradigms and heterogeneous artifacts.

§ Provide correct, secure and intelligence and healthy
evolution by architectural design – a theory of
generic refinement
o in which integration verification and simulation techniques

are driven by construction

Contracts-Based Models/Specifications

• A contract is a very general notion in many disciplines.
• For CPS design, a contract is given by a pair of

properties

C =A |-- G

A: assumptions on the environment, and
G: the promise of the component under these assumptions

• The model of contracts is general for functions, interactions,
and QoS, i.e. multi-concerns.

Contract-Based Model Supports CBD and SOA

• Use as much as possible elements from available
components and services

• Component/service composition C =A |-- G C1 =A1
|-- G1 C2 =A2 |-- G2

A = (A1∧A2)∨ ¬(G1∧G2), G = G1∧G2

• Key challenge in CPS is to develop a model of
contracts to
– model interactions between physical and components
– mix different physical systems, control logic, and

implementation architectures

Support MBD

• The main philosophy of MBD is integration virtualisation, and
contract composition is model composition.

• Support correctness preservation model transformations, by
refinement

C1 ⊑ C2 if A1 <== A2 and G1 ==> G2

• Support layered design, correct realisation of contract or a
component in higher layer by assembling components in a
lower layer

• Theorem: (Contracts, ⊑) forms a partial order, the lower and upper
bounds are

C1⊓C2 = A1∨A2 |-- G1∧G2 C1[]C2 = A1∧A2 |-- G1∨G2

• Separation of Multiple viewpoints, e.g. Cf⊓Ct = Af∨At |-- Gf∧Gt

§ Imperative Programs
Ø Hoare Logic {Pre} P {Post}
Ø UTP Pre |- Post [Hoare&He]

§ OOP: Meyer’s Design by Contracts, rCOS [He, Li &Liu]
• Reactive Systems

Ø Jones’ theory of Rely-Guarantee
Ø Lamport’s TLA: E ==> S

§ Component-Based Systems: rCOS [He, Li & Liu]

•
Component M1

Z d;
provided interface M1IF {

W(Z v) { d:=v }; R(;v) { v:=d };
}

•
Component M

Z d, Bool w = true;
provided interface MIF {

W(Z v) { w&(d:=v,w:= not w };
R(;Z v) {not w&(v:=d; w:=not w)};

}

18

Component M
Z d;

provided interface MIF {
W(Z v) { d:=v }; R(;v) { v:=d };

protocol {(WR)*+(WR)*W} // ** generally traces }

Component M requires M1 //** M is obtained through coordinating M1
Bool w = true;

provided interface MIF {
W(Z v) { w&(M1.W(v);w:=not w)};
R(;Z v) {not w&(M1.R(;v);w:=not w };

}

Component M requires M1 //** M is obtained through coordinating M1
provided interface MIF {

W(Z v) {M1.W(v)}; R(;Z v) { M1.W(;v)};
protocol {(M1.WM1.R)*+(M.1WM.1R)*W}

}

19

component fM {
Z d;

provided interface MIF {
W(Z v) { d:=v };
R(;v) { v:=d };
protocol { (WR)*+(WR)*W}
}

actions { //fault modelling corruption of memory
fault {true|- d’< > d }

}
•

fMi=fM[fMi.W/W,fMi.R/R], i=1,2,3,

•

component fMi requires fM
provided interface MIFi {

fMi.W(Z v) {fM.W(v)};
fMi.R(;Z v) {fM.R(;v)}

}

20

component V requires fM1, fM2, fM3
Z v1,v2,v3,
provided interface VIF {

W(Z v) { fM1.W(v)||fM2.W(v)||fM3.W(v) };
R(;v) { fM1.R(;v1)||fM2.R(;v2)||fM3.R(;v3);v=vote(v1,v2,v3)) };

protocol { W({W,R}) } //*notice one can specify different protocols
}
}

• V⊑M. i.e. V refines M,

•

21

22

• Each phase is based on the
construction of verifiable models

• Models are analysed and verified
• Refined models are constructed

by model transformations
• Code is generated from design

models
• Proof obligations are generated

by model transformations
• rCOS modeler integrates UML

model notation into rCOS

23

24

25

26

•

•

27

28

29

30

31

Cyber-Physical Components
• Physical Interface

• Cyber-Physical Component

Physical Components and Interfaces
Component A{/*an appliance

rate: [Time à Real];
status: {on, off};

provided interface {
rate {/*signal: given by manufacture};
switch() {/*operation: switch A on and off}

}
}

Component M {/*meter
val: [time à Real];
provided interface {

read(;r){true |- r’=val};
}
required interface rate {/*signal

val= energy(rate)
}

}

Composition: H = A||M

A
rate:	[Time	à Real]
status:	{on,	off}

switch()

rate

M
val:	[Time	à Real]read	()

rate
rate

read	()

System Evolution for Home Automation (a)

• Add	provided	signal	‘val’	to	M
• Add	a	control	pad	P that	requires	 signal	‘val’,	provides	 `set()’,	 and	calls	A.switch,	etc.	

M’=P||M,	 H’=M’||A
• Refine	P	with	planning	with	daily	budget,	 and	schedule	 functionality	 																									

M’’	=	P’||M,	H’’=M’’||A

read	()

A
switch()

M

rate

val
read	()

P
val

set		()

P
budget	

H’’

System Evolution for Home Automation (b)

Ai = A[switchi/swich,ratei/rate], A= A1||…||Am

lMi= M[readi/read, vali/val], M=M1||...||Mm

Pi= P[…,…], P=P1||…||Pm

read	()

A
switch()

M

rate

read	()
val

set		()

P
budget	

H’’

read	() set	()

System Evolution for Home Automation (b)

• Add	a	global	 controller	for	planning	 and	schedule	 																																																												
H = G||P||M||A

• Control C	with	mobile	phone	 from	car	or	office	

A

M

P

A

M

P

A

M

P

A

M

P

A

M

P

A

M

P

G

C

H

Network Evolution
• Consider	k	households	Hj, each	with	its	own	

budget
H	=	H1||H2 ||….||Hk

• Consider Coordinator,	 	interacting	the	
households	 to	coordinate	their	budgets,	
based	on	the	interaction	with	of	a	utility	
company	Utility
N = H||Coordinator||Utility

• Evolve		to	a	network	U of	utility	companies	 																																																																							
N = H||Coordinator||U

• Implement H||Coordinator by	distributing	 the	
coordination	activities		among	 the	
households	 themselves

Note		individual	 	households	 evolve		in	parallel,	
and	in	parallel		with	the		network	with	more	
households	 and	companies	

H1 H2 H3

Coordinator

Utility

–
–

–

