Linking Heterogeneous Models for
Intelligent-Cyber-Physical Systems

Zhiming Liu
Centre for Research & Innovation in Software Engineering (RISE)
Southwest University, Chongqing, China

zhimingliu88@swu.edu.cn

http: //computer.swu.edu.cn/zhimingliu/

@ Dagstuhl Seminar, Germany. November 12-15,2017, Germany

Model, Thing & Theory of Models

= Modelling: The model, thing being modelled, modelling
paradigm
= Modelling theory: support abstraction & refinement,
rigorous analysis, verification and manipulation of models
= The thing are often modelled from different viewpoints
o Orthogonal or but often interrelated

o Different viewpoints maybe modelled different with
different notations and paradigms

o Models of different views of the thing need to be
integrated to form a “whole” model of the thing

= Modelling Languages: describe models
= Specification Languages: describe properties of models

= SL and ML can be the same, e.g. TLA

Models for Separation of Concerns

Event-Based - Trace Models:
= CCS and CPS-like languages abstract data away
= Automata-based models (I/O automata)
Data State-Based with an Operational semantic Model
= TLA, Action Systems, B , Alloy - State Transition Systems
* They are also declarative
Declarative and State-Based: VDM, Z, JML (Hoare-Logic Based)
Combination:
= Value-passing CCS and CSP (limited)
= Occam
* Labelled Transition Systems
Multi-view modelling: UML-like, Simulink, rCOS
Timing model for scheduling

CPS

A CPS combines a cyber side with a physical side.
Cyber side - computing and networking

Physical side - mechanical, electrical, and chemical
processes

The cyber components control the physical side using
sensors and actuators, as well as providing services to
users

Sensors and actuators are interfaces that
observe/sense the physical system and actuate the
controls

Human actors - involve human-machine interaction
CPS include IoT, Data Centres and M2M

BMS as CPS

[Battery Management System]
Tractlon : ; Vehicle : ; Battery
inverter controller charger
1 1 1
L 7
/ > Interface module \

Controller area network

core module

Battery management Batterymanagement e 5 Battery management
core module core module

Controller area network

N

/[Capacitor group]\ ' ' Capacitor group ' /[Capacitor group

]\

cell
cell
cell
cell
cell
cell
cell
cell

- L _ \-

cell

J

\[Battery pack

)/

\ 4

Sensors

CPS Based BMS

Intelligent Battery l-ife Charging
(dis) charging analysis state analysis Solution:
and evaluation ‘

Potential Other > Refer to experience
risk prediction Application potential apps > Use CPS architecture
interface protocol p

P —— > Unified standard
Cloud coe
lattorm ® Big data analytics T UEIET S management
® Dynamic evolution EBiEEels » employ data from

® Intelligent decisior] .y .
Historical data |l ® Pattern matching [jrest & evaluationnIVI{elln[SaSIeE]
storage system system

Data interconnection Architecture :
interface protocol

Q)
o
o
(on
©)
q
Y
=
©)
S

g » Multilevel CPS
-
% g w Industrial » Dynamic evolution
= 9 hetwork architecture

~ :

Car BMS > Adaptive

s) components
v% S .. £ > » Interface based
- Q interconnection

Capacitor Battery Battery pack Electric car

BigData- Where from, What for & Why 4Vs

Through sensors, "things” are virtualized as data in
order to be identified and shared/transmitted

Dynamically used in and drive the evolution of CPS, as
well as processed as historic data

The value of data as virtualisation of things is to
create views from separate data sources

Views implemented as APIs, and further linked to
realise business processes and workflows

BigData are an integrate part of CPS and used to
develop value added services and drive systems
evolving behavior

BigData are an Integrated Part of CPS

eesSoftware (Paradigms) in CPS

4)

= JoT Layer - Embedded Software, Drivers and OS in sensors and
devices

= Computation & Coordination Layer - bigdata processing and
analytics, databases, control/monitoring/coordinating software

= Application Layer - Apps. web/cloud services, business &
workflow managements

= Network layer - communication protocols, network
infrastructure & resources management and scheduling (SDN)

= Involve different software architecture styles and technologies:
OOA, SOA, CBA, MDA, Al

Need seamless integration of architecture styles and technologies

°ee AI in CPS

a

Knowledge reasoning, as well as data analytics, is
involved in

create views - smart service

decision making in business processes and workflows

* Computer vision and Natural Language Processing in
human-machine interaction (HMI), and
removing the barrier to software requirements elicitation,
analysis, formalisation, and prototyping.

* Robots are obviously in CPS.

\
End-to-End Modelling & Verification AI Components &

Composition of Al and Non-AI Components

intelligent control — monitor, analyse, plan and execute
dynamic service discovery and binding - Evolving SOA.

~

Evolving Architecture

CPSs cannot be built from scratch, but they are ever evolving
1. Develop new components and plug info the system
2. Dynamically find and connect components
3. Adding more interfaces and/or improving performance of
interface, as to allow cyber components to
1) sense more and better about its environment

2) make more intelligent control decisions, and provide smarter
services

3) control and coordinate more and better physical components

4. With 1&2 to "connect” what were originally separated

components to allows them fto interact, collaborate and
coordinate

5. With more and better connectors, coordinators, interfaces
to improve trustworthiness

How RV Can Contribute to Healthy/Safe Evolution &

Cam D\ AMcaavitlhhion e Evralv D

Challenges

= Requirements

— Cope with changes and uncertainties: both during
development and at runtime

— The relation between performance and functionalities

* Handling evolving architecture with heterogeneous
components of mixed criticality

— Dynamic component plug in and play (composability)

— dynamic discovery and binding services and components,
(evolving SOA)

— Predictability, safety, security, robust, self-organising, self-
adaptive.

= Verification of AI Components and Composition of
non-learning and learning components

A Proposed Position

= Taking an existing CPS ecosystem as the infrastructure,
develop and integrate CPS components and Services

= A combined component-based and service oriented
design and evolution

— System architecture is horizontally component-based and
vertically service-oriented

— Develop new layer of services, monitoring and control
(SOA)

— Refine/evolve existing layer of coordination, monitoring
and control

= Combining different modelling paradigms (for different
concerns of design and verification), including Al
paradigms

Objectives/Vision

= A model-driven approach to Contract-Based CPS
Component Design, integration and Evolution

1) Seamlessly and coherently combination of the various
dimensions of the multi-scale design space - behavior, QoS,
space and time

2) Unifying semantic theories of different modelling paradigms
3) Linked techniques and tool support for integration different
development paradigms and heterogeneous artifacts.
= Provide correct, secure and intelligence and healthy
evolution by architectural design - a theory of
generic refinement

o in which integration verification and simulation techniques
are driven by construction

Contracts-Based Models/Specifications

* A contract is a very general notion in many disciplines.

* For CPS design, a contract C is given by a pair of
properties

C=A |-G

‘A:assumptions on the environment, and
G: the promise of the component under these assumptions.

* The model of contracts is general for functions, interactions,
and QoS, i.e. multi-concerns.

Contract-Based Model Supports CBD and SOA

* Use as much as possible elements from available
components and services

« Component/service composition C =4 |-- G of C, =4,
[-- G, and C, =4, |-- G,

A=(BAR)V -GG, G=GNG,

* Key challenge in CPS is to develop a model of
contracts to
— model interactions between physical and components

— mix different physical systems, control logic, and
implementation architectures

Support MBD

* The main philosophy of MBD is integration virtualisation, and
contract composition is model composition.

* Support correctness preservation model transformations, by
refinement

C,EC,ifA <==A,and G, ==> G,

* Support layered design, correct realisation of contract or a
component in higher layer by assembling components in a
lower layer

* Theorem: (Contracts, C) forms a partial order, the lower and upper
bounds are

CnC, =£Zl1\/ﬂ2 | -- Gl/\GZ Cl[] C, = 7l1/\?l2 | -- glvgz

« Separation of Multiple viewpoints, e.g. C/1C, = A;VA; |--G;AG;

Well-Known Contract-Based Models

Imperative Programs
» Hoare Logic {Pre} P {Post}
> UTP Pre |- Post [Hoare&He]

OOP: Meyers Design by Contracts, rCOS [He, Li &Liu]

Reactive Systems

» Jones’ theory of Rely-Guarantee
» Lamports TLA: E ==>§

Component-Based Systems: rCOS [He, Li & Liu]

Model of Architectural Components

* Service component

Component M1
Zd;
provided interface M1IF {
W(Z v){d:==v}; R(v){vi=d}
¥

* Reactive component

ComponentM
Z d, Boolw = true;
provided interface MIF {
W(Z v) { w&(d:=v,w:=not w };

R(;Z v) {not w&(v:=d; w:=not w)};

}

Equivalent Models

Cozmdponent M
p’rovided interface MIF {
W(Zv){d:=v}, R(v){v:i=d};
protocol {(WR)*+(WR)*W} // ** generally traces }

ComponentM requires M1 //** M is obtained through coordinating M1
Boolw = true;
provided interface MIF {
W(Z v) { w&(M1.W(v);w:=not w)};
R(;Z v) {not w&(M1.R(;v);w:=not w };

ComponentM requires M1 //** M is obtained through coordinating M1
provided interface MIF {
W(Z v) {M1.W(v)}; R(GZ V) { M1.W(v)};
protocol {(M1.WM1.R)*+(M.1TWM.1R)*"W}

More General Component

coEngonent fM {
p’rowded interface MIF {

%Z v) {d:i=v}
R(Gv) {vi=d };
protocol { (WR)*+(WR)*W}

actions {//fault modelling corruption of memory
fault {true|- d’'<>d }

* Renaming as a built-in connector,
fMi=fM[fMi.W/W,fMi.R/R], i=1,2,3,
*But can be built by composition

component fMi requires fM

provided interface MIFi {
fMi.W(Z v) {fM.W(v)};
fMi.R(;Z v) {fM.R(;v)}

20

Orchestration

componentV requires M1, M2, M3
Zv1v2,Vv3,
provided interface VIF {
W(Z v) { T M1.W(v)|[f[M2.W(V)||[fM3.W(v) };
R(;v) { ftM1.R(;v1)||fM2.R(;v2)|[fM3.R(;v3);v=vote(v1,v2,v3))};
\ { W({W,R}) } //"notice one can specify different protocols

}

 VEM. i.e. V refines M, provided at most one memory is corrupted
Verification

* The proof need to introduce auxiliary variables

Note three different instances of fM are running in parallel in side these
fMi’s, this in V

Architecture Decision for Fault-
Tolerance

/Guiyang /fault.rcosdi
Component Model

Fauie

- < COMpPOoONent>»

- CBOIVICRCOMPONEnt = =
"a

‘ < <componenti=i- &]I

< <$.rvtc.¢otn.omt> >

<<component>> &] <<component>> &]
« < ServiceComponent - - - wServiceComponent > -
az
ez

5.

___________ ..«:)c\c}non-v o~
< < De logmean > > ﬂr’.\on- -

-r <<component>> B | i
-« ServiceComponent = -
v
—

—)
| [Properties 2. Problems | €] Error Log | (i rCOS Spec |

] <« <contractinterface>> <Iinterface> VIf

Model l Name Parameter
w Zwv ;

Operations R

Comem®csom e

1 s Zvwv

Model-Driven Development
with rCOS

- Each phase is based on the e p——
construction of verifiable models '.'iié = = e
* Models are analysed and verified ; EE = ‘ L

* Refined models are constructed —] £ o

by model transformations

» Code is generated from design
models

» Proof obligations are generated

by model transformations
« rCOS modeler integrates UML
model notation into rCOS

Component Interface Sequence Diagram

<<Component>
ProcessSale
Cashier I
1: startSale() |
ke
loop)
2: enterltem{upc,qty)
L
3: endEntry()
P
4" makeCashPayment{amount)
Powe®d By Visual Paradigm Community!Edition
L 151 | Ul ' | 9

Component Interface Sequence Diagram

<<Component>
ProcessSale
Cashier I
1: startSale() |
ke
loop)
2: enterltem{upc,qty)
L
3: endEntry()
P
4" makeCashPayment{amount)
Powe®d By Visual Paradigm Community!Edition
L 151 | Ul ' | 9

Component Class Diagram

Is-Contained-in
*Logs-completed
Checks-out

Paradigm Community Edition 0

26

Operation Contract makeCashPayment(a)

Preconditions

1.Store exits
2.CashDesk exits
3.Catalog exits
4.Sale is complete

*Postconditions
5.a new cashpayment is created
6. amount of the new cashpayment is set to a

7.the new cashpayment is linked to the sale

OO Design: makeCashPayment()

. CashDes sale - Sale [CashPayment T Store <<Setr>
Sale
Cashler | I T T
) | | | | |
» | | | | |
1 makeCashPaymentia.Quantity) 1.1: makeCashPayment(a) | : | |
L1.1 Create(a) | |
| |
[| |
D s i s srcin S ’f 1.2.1: addisale) |
| |
| |
| | |
| | | |
| | | isud! Paradigm Community Eddtior 0
L] | ' | |

OO Design to Component-Based

Design

utee 19 caroPay1Card)

SaleaHander Storetak : Clock

sanSa e 9 nalDaiadl ek
> 2: getDaed) 04 >

3 SanNowm 03N, o Ljgoton Do

CR 4 ke

19 inahSsie

Nt 13 cashPayldoubio) cogio .
' 14; potTomd dogto

megt)
Seiep

b

¢ gecl nosd) sotLino g

uedatelrreenicey Garoode

: Bank

Automatically Generate
Component Diagram

CashDeskComp

Cas hPﬁym ntIF Car dPT\(m ntiF

<<component>> <<component>>
CashPayment CardPayment

rCOS Design Process
Summary

1. use case as component

2.refine use case
operations by design 3] | - —
patterns to generate an [— |
oo interaction model L k)

3.generate design class
model | |

4. transform the oo e | | ctrmitacoie comt)
interaction model to a 4 TR
component interaction — -
model ' S

5. generate the component
diagram

6. transform oo interfaces : S Abstract
to specific middlewares,
e.g. RMI, CORBA etc. " — et g

7.Integrates implemented 7 W Generate e IS
use cases —

' | Design
LT v Pattern

by Remi By code Lol |

[L i A !
s $uyhourd fwourt)

|
L i

Code generation and testing . | | —
after 3 or6

IR

n

Cyber-Physical Components

* Physical Interface

* Cyber-Physical Component

B »Y1
y g ;YI
" ..

Xy

Xn

Physical Components and Interfaces

Component A{/*an appliance
rate: [Time - Real]; switch()
status: {on, off}; ®—
provided interface {
rate {/*signal: given by manufacture};
switch() {/*operation: switch A on and off}

} V rate

}
ComponentM {/*meter rate

val: [time - Real];
provided interface {

read(;r){true |- r'=val};
}

required interface rate {/*signal
val= energy(rate)

}

}

Composition: H = A||M

System Evolution for Home Automation (a)

H " switch()
set ()
®
rate
o vahl
read ()
Fggg §

Add provided signal ‘val’ to M

Add a control pad P that requires signal ‘val’, provides ‘set(), and calls A.switch, etc.
M’=P| [M, H'=M’]| |A

Refine P with planning with daily budget, and schedule functionality
MH — P)l |M’ HH=MH| |A

System Evolution for Home Automation (b)

H " switch()

rate

val

(o

read ()

Ai = A[switch/swich,rate;/rate], A=A, ||...||A,,
Mi= M[read,/read, val;/val], M=M,||...||M,,
P="P[...,...], P=P]|...||P,,

System Evolution}
read()?

¢ _ulc Automation (b)
?seto

9 H

 Add aglobal controller for planning and schedule
H =GI[P|[M||A
e Control C with mobile phone from car or office

Network Evolution

Consider k households Hj. each with its own
budget

H=H,[[H; [|....|[Hk

* Consider Coordinator, interacting the
households to coordinate their budgets,
based on the interaction with of a utility
company Utility
N = H||Coordinator||Utility

* Evolve to anetwork U of utility companies
N = H||Coordinator||U

* Implement H||Coordinator by distributing the

coordination activities among the
households themselves

7 I

Note individual households evolve in parallel,
and in parallel with the network with more
households and companies

—_

Conclusions

CPS as unified view of emerging systems

BigData, Al and Learning software, as well as non-AI
systems, are all involved

Architecture models are essential for
— correct and secure by design,

— identification of safety vulnerabilities and security
threats, and

— making architecture decisions for different concerns
(aspect-orientation)

There is a need of linking of different modelling
paradigms for Al systems, Hybrid Systems,
Component-Based and Service Based Software
Systems.

Need to handle and support healthy/safe evolution
from multi-dimensions

Indirections

“All Problems in Computer Science can be
Solved by Another Layer of Indirection.

But that usually will create another
problem.”

--- David J. Wheeler

