
DOI 10.1007/s00165-007-0067-y
BCS © 2009
Formal Aspects of Computing (2009) 21: 103–131

Formal Aspects
of Computing

Graph transformations for object-oriented
refinement1

Liang Zhao1, Xiaojian Liu1, Zhiming Liu1 and Zongyan Qiu2

1 UNU-IIST, P. O. Box 3058, Macao SAR, China. E-mail: z.liu@iist.unu.edu
2 LMAM and Department of Informatics, School of Mathematics, Peking University, Beijing, China.

Abstract. An object-oriented program consists of a section of class declarations and a main method. The class
declaration section represents the structure of an object-oriented program, that is the data, the classes and
relations among them. The execution of the main method realizes the application by invoking methods of objects
of the classes defined in the class declarations. Class declarations define the general properties of objects and
how they collaborate with each other in realizing the application task programmed as the main method. Note
that for one class declaration section, different main methods can be programmed for different applications,
and this is an important feature of reuse in object-oriented programming. On the other hand, different class
declaration sections may support the same applications, but these different class declaration sections can make
significant difference with regards to understanding, reuse and maintainability of the applications. With a UML-
like modeling language, the class declaration section of a program is represented as a class diagram, and the
instances of the class diagram are represented by object diagrams, that form the state space of the program. In
this paper, we define a class diagram and its object diagrams as directed labeled graphs, and investigate what
changes in the class structure maintain the capability of providing functionalities (or services). We formalize
such a structure change by the notion of structure refinement. A structure refinement is a transformation from
one graph to another that preserves the capability of providing services, that is, the resulting class graph should
be able to provide at least as many, and as good, services (in terms of functional refinement) as the original
graph. We then develop a calculus of object-oriented refinement, as an extension to the classical theory of data
refinement, in which the refinement rules are classified into four categories according to their natures and uses in
object-oriented software design. The soundness of the calculus is proved and the completeness of the refinement
rules of each category is established with regard to normal forms defined for object-oriented programs. These
completeness results show the power of the simple refinement rules. The normal forms and the completeness
results together capture the essence of polymorphism, dynamic method binding and object sharing by references
in object-oriented computation.

Keywords: Class graph; Object graph; Graph transformation; Normal form; Object-orientation;
Structure refinement

Correspondence and offprint requests to: Z. Liu, E-mail: z.liu@iist.unu.edu
1 This work is supported by the projects HighQSoftD and HTTS funded by Macao Science and Technology Fund, Chinese NSF project
60673114, Chinese NSF project 60573081 and 863 of China 2006AA01Z165.

104 L. Zhao et al.

1. Introduction

The research in the past half a century in the area of formal methods has been focused on procedural programs and
languages. For this kind of programs, formalisms have been developed that define execution models of programs
and provide useful techniques and tools for specifying what programs do, reasoning about and analyzing the
correctness criteria of programs and verifying why a program does what it is required to do. There are also
theories and calculi of refinement [BvW98, HHS86, Mor94] to support techniques of correctness by construction or
correctness preserving transformations. We can confidently claim that for procedural programs, we have developed
a good understanding of what programs do, how they do it, and why they work.

An analogous understanding for object-oriented programs and object-oriented languages has not yet been
established. There exists a big body of research on formal semantics of object-oriented programs, e.g. [AC96,
BSC03, JO04, AdB94, CN99, Nau94], but though rarely stated in the literature, the common feeling is that it
is difficult to understand and use the semantics of object-oriented programs. One of the reasons is that it is hard
to relate a denotational (or an axiomatic) semantics to an operational semantics. It is even harder to verify the
refinement of object-oriented specifications and designs, and algebraic properties of object-oriented programs.
This leads to the confusion that object-oriented programming can only be carried out in bottom-up and/or in an
extreme programming process. However, this cannot be right as otherwise it would be contradictory to the fact
that object-oriented development is effectively applied in large software projects.

Variants of λ-calculus, that is the fundamental underlying theory of functional and procedural languages,
have been tested on object-oriented programs. However, there are always features of object-orientation that can
be hardly treated in those calculi. For detailed discussion on this issue, we refer the reader to the book of Abadi
and Cardelli [AC96]. The calculus developed in that book itself focuses on the characterization of the behavior
of objects. This characterization helps the understanding and treatment of the functional behavior of object
programs, but it largely ignores the design issues of structure of the data and classes of such a program. Hoare
logic and the calculus of predicate transformers are also used in defining semantics of object-oriented languages,
e.g. [AdB94, CN99, Nau94]. Again all these focus on functionalities of objects or methods of classes, without
providing much help to the design of the class structure. However, experienced researchers and teachers in the
area of object-oriented programming come to realize that the design of the class structure and the functionality
are equally important and closely related.

In rCOS, a refinement calculus has been recently developed by He, Li and Liu [HLL06] based on a relational
semantics given to object-oriented programs. There, an object-oriented program can be represented in the form
of Cdecls • Main, where the class declaration section Cdecls is a sequence of class declarations with their attributes,
methods, and inheritance relations; and Main declares a main class with a main method [HLL06]. The main class
declares, as its attributes, a set of main variables whose types are either primitive built-in data types or class types
declared in Cdecls. The main method implements an application by calling some public methods of public classes
in the declaration section. Given one class declaration section, different main methods can be programmed for
different applications, and this is an important feature of reuse in object-oriented programming. On the other
hand, different class declaration sections may support the same applications, but these different class declaration
sections can make significant difference with regards to understanding, reuse and maintainability. If for any
Main, Cdecls2 • Main behaves “at least as well as” (or refines) Cdecls1 • Main, we call Cdecls2 a structure refinement of
Cdecls1 [HLL06]. Here, “behavior” is only about functionality, and the refined class structure Cdecls2 supports all
functionalities that the class structure Cdecls1 supports. This notion of refinement combines the design of class
structure and functionality of the classes. It is easy to see that a class declaration section can be represented as an
UML class diagram, and the instances of the class diagram are represented by UML object diagrams. The class
diagram determines the general properties of objects and how objects collaborate in realising the application task
programmed as the main method.

1.1. Contribution

For an object-oriented program, we define its class declaration section by a labeled direct graph called a class
graph, and a state of the program by a rooted labeled directed graph called an object graph. In a class graph, a node
is either a class node that is labeled by a class name or a leaf node that is labeled by the name of a primitive data
type. An outgoing edge of a class node is either labeled by an attribute of the class or the symbol ✄ representing
the inheritance relation, and the target node of the edge is the name of the type (or class) of the attribute or the
direct superclass of the source node, respectively. In an object graph, the root represents the unique instance of

Graph transformations for OO refinement 105

Fig. 1. Structure refinement

the main class. Any node different from the root is labeled by a typed value that is a pair (v, T), where v is either
an object reference if T is a class, or an element of T if T is a primitive data type. For each attribute x : T of the
main class, there is an edge labeled by x from the root to a node whose type is T . An outgoing edge from (v1, T1)
to (v2, T2) is labeled by an attribute a of T1, representing that the value of attribute a of object v1 is v2. Therefore,
there is an edge from (v1, T1) to (v2, T2) labeled with a if and only if one of the following conditions holds for the
class graph

1. a is an edge from T1 to T2,
2. a is an edge from a superclass of T1 to T2,
3. a is an edge from T1 to a superclass of T2,
4. a is an edge from a superclass of T1 to a superclass of T2.

A class graph defines a set of object graphs for each given main class, and these object graphs form the potentially
infinite state space of the program.

The execution semantics of a command in the program is then a state transition from one object graph OG
to another object graph OG′. This allows us to relate the relational semantics of rCOS defined in [HLL06] to an
operational semantics that can be easily defined in terms of graph transition systems [GRPPS98]. Based on this
graph notation and the semantics, we study the theory of class graph transformations to understand the design
of the class structure and its relation to the design of the functionality of the classes.

We then define the notion of structure refinements in terms of graph transformations so that given

1. an object-oriented program, let CG be its class graph and OG its set of object graphs,
2. a structure refinement ρ from CG to another class graph CG1,

we are able to derive

1. a transformation ρo from an object graph OG of CG to an object graph OG1 of CG1, and
2. a transformation ρc from commands defined under CG to commands defined under CG1,

such that the diagram in Fig. 1 commutes.
After formally defining the notion of structure refinement, we give four sets of structure refinement rules.

1. The first set of rules allow us to expand class graphs and they are used for object-oriented decomposition
and incremental programming by adding classes. These rules do not depend on methods of classes.

2. The second group of rules are graph compression rules for combining classes, removing redundant classes,
attributes, and collapsing an inheritance relation that does not involve method overriding.

3. The third group of rules are concerned with transforming definitions of methods of classes without changing
the structure of the classes.

4. Two more rules for removing polymorphism by collapsing inheritance relations with method overriding.

The rules in the first group support object-oriented top down and incremental design, and the other rules are
useful for program refactoring, abstraction, analysis and reverse engineering.

We will see that it is easy to establish the soundness of these rules with respect to the definition of the structure
refinement. For their completeness we will prove that the first set of rules are complete for a restricted set of class
graph transformations (called well-typed structure transformations). Furthermore, we will define two normal
forms of object-oriented class graphs:

Normal Form I: Such a normal graph forms an inheritance tree that contains all classes and there is at least
one private class. We will show that the second and third set of refinement rules, together with the attribute

106 L. Zhao et al.

renaming rule, are complete in that any class graph can be transformed by them to a graph of this normal
form.

Normal Form II: Such a normal graph only has a set of public classes. These public classes may or may not be
linked by associations and inheritance relations. We will prove that a graph of this form can be obtained from
any class graph of the first normal form by using two rules for removing polymorphism.

These results of completeness capture the essence of polymorphism, dynamic method binding and data sharing
via references in object-oriented computation. They show the difference and relation between object-oriented
programming and procedure (and modular) programming.

The semantics of structure refinement is formally based on the denotational semantics in [HLL06]. However,
for the understanding, an operational semantics based on the definition of object graphs as the program state
space is informally proposed. It is straightforward to formalize this operational semantics and show its consistency
with the denotational semantics. However, we will leave it out of this paper.

1.2. Related work

There exists a big body of research on formal semantics of object-oriented programs. Model-based formalisms
have been used extensively in conjunction with object-oriented techniques, via languages such as Object-Z
[Smi00], VDM++ [DD93], and methods such as Syntropy [CD94] which uses the Z notation and Fusion
[Col94] that is based on VDM. Whilst these formalisms are effective at modeling data structures as sets and
relations between sets, they are not designed for defining semantics of object-programs and thus do not deal with
more sophisticated object-oriented mechanisms of object-oriented programming languages, such as dynamic
binding and polymorphism. Moreover, we believe that a modeling notation using the format of classes with
inheritance and abstract specifications of class methods are more directly related to object-oriented programming
languages and appealing to practical engineers and programmers than the classical formal notations such as the
Z-schemas and their operators.

Cavalcanti and Naumann defined an object-oriented programming language, called ROOL, with subtypes
and polymorphism [CN99, Nau94] using predicate transformers. Sekerinski [Sek96, MS97] defined a rich object-
oriented language by using a type system with subtyping and predicate transformers. However, neither reference
types nor mutual dependency between classes are within the scope of these approaches. Because of complex
flow of control, it is infeasible to calculate the weakest precondition of an object-oriented program for a given
post condition. Thus semantic proofs of refinement rules in ROOL are quite hard and complex even without
references. Without the inclusion of reference types, some interesting refinement rules can not be proved [BSC03].
America and de Boer have given a logic for the parallel language POOL [AdB94]. It applies to imperative
programs with object sharing, but without subtyping and method overriding. Abadi and Leino have defined
an axiomatic semantics for an imperative, object-oriented language with object sharing [AL97], but it does not
permit recursive object types. Poetzsch–Heffter and Müller have defined a Hoare-style logic for object-oriented
programs that relaxes many of the previous restrictions [PHM99]. As [Lei98] points out, the specification of
a method in the Poetzsch–Heffter and Müller logic is derived from the method’s known implementation, and
therefore it does not support the notion of refinement. Leino has presented a logic in [Lei98] with imperative
features, subtyping, and recursive types. It allows the specification of methods, but inheritance is restricted and
visibility is not considered.

In addition to the limitations discussed above, there is a common feeling that these semantic definitions are
difficult to understand. Except for a restricted class of static properties, the different semantic definitions do not
seem to be effective for analysis and verification of object-oriented programs. Verification of refinement of object-
oriented specifications and designs is even harder. We attempt to improve the understanding and use of the formal
calculus rCOS [HLL06] by using a graph theoretical approach. In rCOS, we provide a semantic model that gives
a mathematical characterization of object-oriented concepts to ensure the correctness of programs. With rCOS,
we define an object-oriented language with subtypes, visibility, reference types, inheritance, type casting, dynamic
binding and polymorphism. The language is similar to Java and C++. It has been used to develop meaningful
case studies and to capture some of the central difficulties in modeling object-oriented designs and programs
[CHH+07]. The graph theoretical notation can be used as the basis for an operational semantics of the langauge
that can improve the understandability of rCOS and the algebraic properties of object-oriented programs.

An algebraic calculus is established for rCOS [HLL06] based on its relational semantics defined in UTP
[HH98]. Compared to the algebraic calculus of class structures given in [BSC03], the semantics of rCOS is easier

Graph transformations for OO refinement 107

to understand and use for verification. The refinement rules in this paper agree with all the rules in [HLL06].
However, the graph calculus in this paper significantly improves the understanding of structure refinement and
for future development of tool support. This paper also extends [HLL06] with the two normal forms of object-
oriented programs and completeness of the rules.

The work in [MS97, BMvW00] handles class and interface refinements. However, there the focus is substit-
utability of individual classes in a class structure. Our work investigates the refinement of a class model as a whole
and supports structure design at different stages of the system development. In [GMB04], a notion of equivalence
between class diagrams is proposed. There, the notion is defined according to properties of objects, instead of
functionalities and object behavior. Thus, it does not address functional refinement.

There is a quite visible community working on graph transformations or transition systems [Ed97]. General
studies of theories of graph transformations are carried in the model of graph transition systems or graph processes
[CMR96, GRPPS98, EEPT06]. Our work in this paper focuses on particular graphs and transformations, that is
graph transformations related to object-oriented program design. The results of those general studies provide the
background for defining the operational semantics of object-oriented program in rCOS, where the object graphs
are the graphs of transition systems and the executions of the methods are the corresponding graph transitions.
The main focus of our work is the transformations of class graphs and their relation to the change of the methods.

Graph transformations have also been applied to software development and maintenance. General software
architectures (or architecture styles) and their refinements are defined in [BHTV04] by graph transformations.
However, only expanding transformations are allowed in a refinement. Furthermore, that work is based on a
rather general model of graph transition systems and does not provide particular treatment of object-oriented
programs. In particular, there are no normal forms and completeness results related to transformations of object-
oriented programs. This is also true in paper [BHTV03]. Graph transformations are also used in [WF02]. There
an algebraic framework is presented based on category theory where architectures are represented as graphs of
CommUnity programs and superpositions. That allows ways to apply connectors to components restricted by
an architectural style, given as a type graph. Dynamic reconfiguration is specified by graph transformation rules
over architecture instances. Both styles and rules are used for modeling domain-specific restrictions rather than
the underlying platform. Consequently, they do not deal with refinement relationships between different levels
of abstraction.

Graph transformations are used in [EHHS00] to define the semantics of UML collaboration diagrams. A
collaboration diagram is defined to be a transformation on the object graphs of a class graph. So transformations
there correspond to the semantics of the commands in rCOS. The focus of our paper here, however, is transform-
ations of class graphs and how they determine the transformations on commands to preserve functionality. In
other words, we are treating and relating graph transformations at two levels of abstractions, the structural level
and the program execution level.

In [KKR06], a theory of graph transformation is applied to a definition of an object-oriented execution
semantics of a mini language. The simulation relation is then studied for programs in that language. The work in
[TR05] formulates structural properties using graph constraints in type graphs with inheritance, and shows how to
translate constrained type graphs with inheritance to equivalent constrained simple type graphs. It then follows
that graph constraints can be translated into preconditions for productions of a typed graph transformation
system which ensures those graph constraints. Our work in this paper goes beyond the concerns of both papers
by looking at how transformations of the class graphs determine the transformations on program commands so
that the functional behavior is preserved. This is an essential problem for program development and maintenance.

The use of object graphs is influenced by notation of graphs for pointer structures in [CJ06], and the idea of
using paths of a graph comes from the trace model of pointers and objects with pointers [HH99]. The notion
of object graphs can be seen as an extension to the notion of execution states in classical imperative procedural
programs. Based on this understanding, we can claim that the theory of a structure refinement between object-
oriented programs is a non-trivial extension to the theory of data refinement [HHS86] for the support of object-
oriented software design. The calculus of object-oriented refinement is even more workable in the sense that,
unlike in classical data refinement where a data mapping must be found for a refinement from one program
to another, the refinement rules also give the data mappings. We believe that this is essential for model driven
development of object-oriented software and for the development of tool support for correctness preserving model
transformations. This extension advances the the classical refinement calculi to a design method2 applicable in
large scale system development with effective tool support for model transformations [CHH+07].

2 The classical refinement calculi could hardly called a design method without effective tool support.

108 L. Zhao et al.

1.3. Overview

Section 2 shows how a class declaration section can be defined as a directed labeled graph. In Sect. 3, we define
object graphs for a class graph to represent system states. We also propose an informal, yet precise and obviously
formalizable, operational semantics of object-oriented programming commands based on class graphs and object
graphs. Section 4 defines structure refinements between class graphs and their derived relations between object
graphs. We also establish a set of basic graph transformation rules and prove that they are sound refinements and
complete with respect to a set of conditions. These transformations can only expand class graphs. In Sect. 5, we
introduce the concept of interface and extend the notion of structure refinements with respect to interfaces. We
also study refinements for compressing a graph by removing redundant structure elements and combining classes.
In Sect. 6, we provide the refinement rules for modifying methods in a class graph without changing the whole
class structure. Section 7 defines the normal forms and proves completeness results. We will draw the conclusions
in Sect. 8 with a discussion about future work.

2. Class graphs

We define a class declaration section as a directed and labeled graph. We use names of data types and classes to
label the nodes and names of attributes and an annotation of inheritance to label the edges. For this, we assume
an infinite set CN of class names, a set T of names of primitive data types, an infinite set A of attribute names, and
a symbol ✄ to annotate the inheritance relation. Let N be the set of names of types, which is the union of CN and
T .

Definition 1 A class graph is a directed labeled graph # " ⟨N, A, E⟩, where

• N ⊆ N : is a set of nodes representing types, including both classes and primitive data types
• A ⊆ A: a set of attribute names
• E ⊆ N × (A ∪ {✄}) × N: a set of triples, called the edges of the graph. An edge (C, a, D) ∈ E for a ∈ A means that

class C has an attribute a of type D, and (C, ✄, D) ∈ E means that C is a direct subclass of D.

Please note that each node in the set N represents either a class or a type of data values. Similar to the definition
of typed attribute graphs in [EEPT06], we can partition N into N1 ∪ N2, where N1 is a set of class names and N2 is
a set of names of data types.

We use ≼ to denote the reflexive and transitive closure of the direct subclass relation ✄, and call D a superclass
of C and C a subclass of D if C ≼ D holds. Obviously, not all class graphs as defined above correspond to well-formed
class declarations, and we need to give the well-formedness conditions.

Definition 2 A class graph # " ⟨N, A, E⟩ is well-formed if it satisfies the following conditions:

1. A node is a leaf of the graph if it is labeled by the name of a data type: (C, a, D) ∈ E, implies C ∈ CN .
2. The inheritance relation is only defined among classes: if (C, ✄, D), then C, D ∈ CN .
3. The inheritance relation is required to satisfy the following conditions

(a) there is at most one ✄ edge from each class. This implies that we assume there is no multiple inheritance.

(b) there is no cycle formed by ✄ edges.

(c) no attribute of the superclass can be redeclared in the subclasses: if C1 ≼ C, C1 ̸" C and (C, a, D) ∈ E then
(C1, a, C2) ̸∈ E for any a, D and C2. That is, we assume no attribute overriding.

4. The names of the attributes of a class are all distinct, that is the labels of all outgoing edges from a class are
different.

When there is no confusion, we simply use the term class graph for a well-formed class graph. Notice that a
class graph has three disjoint sets of edges:

• Data attributes: also called data edges, are those edges (C, x, T) such that T is a primitive type.
• Association attributes: also called association edges, are those edges (C, a, D) such that D is a class. We also

simply call an association attribute an association, and use the term attribute for either a data attribute or an
association.

Graph transformations for OO refinement 109

Person

Reservation Room Int Transaction

Person

Guest

resv resvstays staysamnt trans

trans

Guest Account

acct

acct

no

amnt: Int

Account

Transaction

ReservationRoom

no: Int

Fig. 2. An example

• Inheritance relations: also called inheritance edges, are the edges (C, ✄, D) for some C and D in the graph.

An edge that is not a data edge is also called a relational edge.
We do not consider the notations of multiplicity and aggregation [BRJ99]. Multiplicities can be dealt with by

introducing container classes whose instances are multi-objects and logic constraints on the numbers of objects
in the multi-objects. Neither do we distinguish aggregations from general associations. As in our observation in
[LHLC03], an aggregation is a special association and an association name is needed anyway when we talk about
an invocation to a method of a “component objects” by the “aggregated” (or “whole”) object. In other words,
whether an association is an aggregation is a semantic property of the association.

For a class node C of a class graph #, we define the following two sets.

• attr(C)
def" {a ∈ A | ∃ D ∈ N • (C, a, D) ∈ E} denotes all labels of the outgoing edges from C, i.e. the set of the

attributes directly defined in class C.
• Attr(C)

def" {a | ∃ D • C ≼ D ∧ a ∈ attr(D)} is the set of labels of the outgoing edges from C and all its superclasses.

For a class graph #, we abuse the OO notation C0.a0.ak−1 to denote a path [(C0, a0, C1), (C1, a1, C2), · · · , (Ck−1,

ak−1, Ck)]; and use dest(C0.a0.ak−1) to denote the destination Ck of the path. For two paths p1 " C.α and p2 " D.β

such that D " dest(C.α), the concatenation p1.p2 of p1 and p2 is C.α.β.
A sequence α " {(Ci, ai, Ci+1) | Ci, Ci+1 ∈ N, ai ∈ A, i " 0, . . . , k} of “edges” is called a navigation path of # if for all

i " 0, . . . , k, ∃ Di, Di+1 • (Ci ≼ Di ∧ Ci+1 ≼ Di+1 ∧ (Di, ai, Di+1) ∈ E). In other words, for all i " 0, . . . , k, ai ∈ Attr(Ci), and Ci+1

is a subtype of the type declared for ai in #. Only associations determine the navigation paths in a class graph.
Notice that each path in the object graph, which will be introduced later, corresponds to a navigation path in the
class graph.

Example 1 The left part of Fig. 2 is a class graph, representing the UML class diagram on the right of the figure.

3. Object graphs and execution of commands

A class graph declares a family of types, thus can be understood as a “complex” type whose elements are object
graphs. For a class graph #, we use N# to denote its nodes, E# the edges and A# the attribute names. We assume
an infinite set REF of references including a special symbol null. We defined a typed value as a pair (r, T), where r
is an element of T if T is a primitive type and a reference otherwise. For a class graph #, we use V# to denote the
set of all values of types declared in #.

3.1. Object graphs as program states

For a class graph # and a given finite set X of main variables {x1 : T1, . . . , xn : Tn} such that each type Ti is a primitive
type in T or a class type declared in #, we define the state space over X by the object graphs of # over X .

110 L. Zhao et al.

(r
3
,Reservation)

(r
5
,Transaction)(1000,Int)

(r
4
,Account)

(r
2
,Guest)

(r
1
,Room)

acctno

stays

trans

resv

ε

(0810,Int)

y
1 y

2

y
3

amnt

Fig. 3. An object graph

Definition 3 Let # be a class graph and X a set of main variables. An object graph of # with variables X , is a rooted,
directed and labeled graph & " ⟨N, L, E, ε⟩, where

• N is the set of the nodes and each of them is either the root node ε or a typed value in V#, that represents a
data value or a reference with its type.

• L " X ∪ A# is the set of the names used to label the edges, notice that A# is the set of attribute names that label
the edges of #.

• E ⊆ N × L × N are the edges of &.
• The root node ε has no incoming edges.
• All nodes are reachable from the root, that is for each node v ∈ N, there is at least one path p from the root

with dest(p) " v. This implies that all the nodes other than the root must have at least one incoming edge

The path in an object graph is defined similarly as in the class graph. An object graph & of # is complete and
correctly typed if every attribute of a non-null object in & is assigned a value with its correct type. The type system
is defined by the navigation paths of the class graph.

Definition 4 An object graph & " ⟨N, L, E, ε⟩ of a class graph # is complete and correctly typed (CCT) with respect
to # if the following conditions hold

1. Type correctness of nodes: if (r, C) ∈ N, then C must be a node in #.
2. Type correctness of attributes: for any edge e ∈ E

(a) if e " (ε, x, (r2, D)) for x : T ∈ X , then D ≼ T ,

(b) if e " ((r1, C), a, (r2, D)) then (C, a, D) is a navigation path of #, that is there exists a node D1 of #, D ≼ D1 and
(C, a, D1) is an edge in #.

3. Completeness: For each node v ∈ N,

(a) if v " ε, it has one and only one outgoing edge for each x : T ∈ X ,

(b) otherwise if v " (r, C), then there exists an edge ((r, C), a, (r1, D)) for some node (r1, D) in & if and only if C
is a class name in #, r ̸" null and a ∈ Attr(C).

We use MX (#) to denote the state space of X on # that is the set of the CCT object graphs of # with variable set
X . we will simply call a CCT object graph an object graph and omit the subscript X when there is no confusion.
Fig. 3 is an example of an object graph of the class graph in Fig. 2, with X " {y1 : Room, y2 : Guest, y3 : Reservation} as
its main variables.

For an edge (C, a, D) of class graph #, dtype(C.a) (or simply dtype(a) when there is no confusion) denotes the type
D, called the declared type of attribute a of class C in #. For an edge ((r1, C), a, (r2, D1)) in an object graph &, type(r1.a)

Graph transformations for OO refinement 111

denotes the type D1, called the current type of attribute a of object r1 in state &. Also, type(r, C) denotes the current
type C of the node (r, C) in the object graph (or state). Definition 4 ensures that each object node in the object
graph represents an object of a class declared in the class graph, and the current type of each attribute is a subtype
of its declared type in the class graph. For a main variable x : T , T is called the declared type of x, denoted as
dtype(x). And for an edge (ε, x, (r, T ′)) in the object graph &, type(x) denotes the type T ′, called the current type of x
in state &. Definition 4 also ensures that the current type of each main variable is a subtype of its declared type.

The root object, representing the instance of the main class, can access an object or a property of an object
via different paths. We can thus use the set of all paths to a node to represent the object that the node intends to
model. In Fig. 3, for example, the (r1, Room) instance can be represented by a set of two paths {ϵ.y1, ϵ.y2.stays}, and
the data value (1000, Int) by a single path {ϵ.y2.acct.amnt}.

3.2. Operational semantics

Let P be an object program specified by a class graph # and a main class Main with X as its main variables. In an
operational semantic view, the execution of P from a state &0, which is an object graph in MX (#), is the execution
of the command of the main method that changes the initial state &0 to a final state, which is another object graph
in MX (#), if it terminates. Each step of the execution of the main method may call for the execution of a method
of an object in the form o.m(x; y){c} from a state & ∈ MX (#) and the execution step changes this state to another
one (see Fig. 4 for examples), where x is the input parameter, y the output parameter, object o and x are nodes of
&, though x can be a data value.

The syntax of command c is defined by the following syntactic rules:

c ::" skip | chaos | le :" e | C.new(le) | le0.m(e; le) | m(e; le) | c1; c2 |
c1 ✁ b ✄ c2 | c1 ⊓ c2 | b ∗ c | var T x; c; end x

Here le :" e assigns e to le; C.new(le) creates an object of class C, and makes le refer to it afterwards; le0.m(e; le) or
m(e; le) denotes a method call, where e and le are input and output parameters respectively; c1; c2, c1 ✁ b ✄ c2, c1 ⊓ c2

and b ∗ c stands for sequential composition, conditional choice, non-deterministic choice and loop respectively;
var and end together form a local scope.

The syntax of expression e and left-value expression le is:
e ::" x | l | null | a | e.a | (C)e | f (e1, · · · , en)
le ::" x | a | le.a

where x represents a variable; l represents a literal of a primitive type; a is an attribute; e.a denotes the attribute
a of the object referred to by e; (C)e casts the type of e to C; and f is a built-in operation for a built-in primitive
types.

A denotational semantics of this OO language is defined in rCOS [HLL06]. With the class graphs and object
graphs, that semantics can be further interpreted by replacing the heap representation of the state by the object-
graph representation: the semantics of a command c under class graph #, denoted as [[c]]#, is a relation between
object graphs of #. Furthermore, an operational semantics can be easily defined following the theory of graph
transition (or transformation) systems [GRPPS98, KKR06]. In this paper, we outline informally the description
of this operational semantics of the rCOS programs below, that is shown in Fig. 4:

1. If c is a simple assignment a :" e, where a is an attribute of the current object node o, then the execution
changes the edge (o, a, t) in &0 to the edge (o, a, val(e)), where val(e) is the value of expression e, which can be an
object or a data value. This is shown in Fig. 4(1).

2. If c is an assignment of the form a.b :" e, where a is an attribute of the current object o and b is an attribute of
o.a, then the execution changes the path (o, a.b, t) to the path (o, a.b, val(e)) as illustrated in Fig. 4(2). The general
attribute assignment a.b1.bk :" e is defined by induction.

3. If c is an object creation C.new(a), where a is an attribute of o and C is a class node of # and a subclass of
dtype(a), the execution changes the edge (o, a, t) in &0 to a newly created rooted graph with (r, C) as the root and
the initial values of the attributes of C (that we would like to ignore here) as nodes. This is shown in Fig. 4(3).

4. The meaning of compositions of commands can be defined inductively.

We would like to note that the execution of a command may cause an object (i.e. a node) in the object graph to
be unreachable from the root. In this case, the object and its outgoing links will be deleted from the object graph.

112 L. Zhao et al.

o

t v a l (e)

o

t v a l (e)

a : = e

o

t v a l (e)

o

t v a l (e)

a . b : = e

a a

s s

b b

o

t

o

t

i n i t (a n)

C . n e w (a) (r , C)

a

a

a a

ana1

i n i t (a 1)
. . .

(1)

(2) (3)

Fig. 4. Examples of object graph transformations

If this deletion makes some other objects unreachable, these objects and their outgoing edges will be deleted too.
And this link-deletion should be done recursively, just as in garbage collection.

Since we allow nondeterministic choice, there is a set of possible final object graphs for an execution of a
command from an initial object graph. Taking an object graph as a state of the program execution, the operational
semantics agrees with denotational semantics defined in [HLL06] such that the condition defining the possible
initial object graphs and the condition defining the possible final objects correspond to the pre and postconditions,
respectively. For a command c we use [[c]]# to denote the semantics of c under the structure defined by the class
graph #.

To support design by stepwise refinement, we must be able to change the structure of the class graph, though
we cannot change the names of the public classes and public methods.

Definition 5 Let F be a set of class names (called a frame), #1 and #2 be two class graphs both containing all names
in F as their nodes. #2 is a F-framed structure refinement of #1, denoted as #1 ⊑F #2 or simply #1 ⊑ #2, if for any set
X of main variables, there exists a relation ρo from M(#1)X to M(#2)X such that for any method m(u : T1; v : T2){c1}
defined in class C of #1, where (x : C) ∈ X for some variable x and C ∈ F , we can define a corresponding method
m(u : T1; v : T2){c2} in class C of #2 and

∀ & ∈ M(#1)X • ([[x.m(s; t)]]#2 (ρo(&)) ⊆ ρo([[x.m(s; t)]]#1 (&)))

for any parameter values s, t.

The frame F in the definition in fact defines the interface classes of the class graph, and it is the interface
classes that provide methods as functional services that can be invoked by the environment, e.g. the application
program. Note that one can define different methods in the same frame of a class declaration section (represented
by a class graph) to support different application programs. Therefore, the above definition says that when taking
classes in F as the interface classes (or public classes), the refined graph #2

1. Provides at least as many services to the environment as class graph #1, that is for any method definable in #1,
there is a corresponding method definable in #2, and

2. Provides as good services to the environment as class graph #1, that is the execution of any method defined
for class graph #2 satisfies all properties of the execution of the corresponding method defined for #1.

Notice that the set inclusion in the definition means that the execution of the command on the left is not
more non-deterministic than the execution on the right. So, if #1 is refined by #2 with respect to frame F , then
for any nonempty subset F ′ of F , #2 is also a refinement of #1 with respect to F ′. We are interested in program
refinement instead of equivalence, though most structural refinement rules are equivalences. This allows us to
combine structural refinements with method refinements that can generally reduce non-determinism.

Graph transformations for OO refinement 113

Later in the paper, we will define rules of transformations from a graph #1 to another graph #2 such that
for each class graph transformation rule R, the “corresponding method” defined for #2 can be obtained by a
transformation Rc, which is derived from transformation R, on the command of the “original method”.

4. Rules of structure refinement for structure expansion

We now study the class graph transformations that are used for object-oriented decomposition. Such a trans-
formation shows how we can refine an object program by expanding its class structure, without weakening its
capability of providing functional services.

Definition 6 Let #1 " ⟨N1, A1, E1⟩ and #2 " ⟨N2, A2, E2⟩ be class graphs, and a frame F ⊆ N1. A mapping ρ from #1 to
#2 is a F-framed structure transformation, denoted by ρ[F], if the following conditions hold:

1. The restriction ρ̂ of ρ to the nodes is an injective mapping from N1 to N2, satisfying ρ̂(C) " C for each C ∈ F .
2. The restriction ρ̄ to the edges maps each association attribute or inheritance relation (C, a, D) in E1 to a path

from ρ̂(C) to ρ̂(D) in #2; and maps each data attribute (C, a, T) in E1, where T ∈ T , to a nonempty set of paths in
#2, each of which starts from ρ̂(C) and ends at a data type in T .

With Condition 2 in the above definition, we can decompose the restriction ρ̄ of ρ to E into its two restrictions

• the restriction of ρ̄ to the relational edges, denoted by ρr , and

• the restriction of ρ̄ to the data attributes, denoted by ρd .

For a structural transformation ρ, let ρ̂+ denote the nodes of #2 that are not in the range of ρ̂ and ρ̄+ the
sets of edges in #2 that are not in any path in the range of ρ̄. With these notations, we can represent a structure
transformation ρ by the tuple ⟨F , ρ̂, ρr , ρd , ρ̂+ , ρ̄+ ⟩. Obviously, not all structure transformations defined above are
structure refinements. They need to satisfy certain typing conditions [EEPT06] or algebraic conditions [CMR96].

Definition 7 A structure transformation ρ[F] from #1 to #2 is well-typed if it satisfies the following conditions:

1. If (C, ✄, D) is an inheritance relation in #1, then ρr (C, ✄, D) is a path in #2 containing only inheritance relations.
2. If (C, a, D) is an association attribute in #1, then the last edge in the path ρr (C, a, D) is also an association attribute

in #2.
3. For two different association attributes or inheritance relations (C1, a1, D1) and (C2, a2, D2) in #1, ρr (C1, a1, D1) is

not a suffix of ρr (C2, a2, D2) in #2.
4. For any data attributes (C1, a1, T1) and (C2, a2, T2) in #1, a path p1 in ρd (C1, a1, T1) and a path p2 in ρd (C2, a2, T2) in

#2, p1 is not a suffix of p2 unless C1 " C2, a1 " a2 and p1 " p2 (obviously T1 " T2 too).
5. For a data attribute (C, a, T) in #1, let ρd (C, a, T) " {C1.β1.a1, . . . , C1.βn.an} where dest(C1.βi .ai) " Ti ∈ T in #2 for

i : 1 ! i ! n, there exists a surjective operation g : T1 × · · · × Tn → T such that the initial value of C.a can be
calculated from those of the target attributes: init(C.a) " g(init(D1.a1), . . . , init(Dn.an)), where Di " dest(C1.βi) for
i : 1 ! i ! n.

A structure transformation from #1 to #2 in fact defines an implementation of the classes, their attributes and
associations in #1 by those of #2. A single inheritance relation is implemented by a number of steps of inheritance,
single association attribute or edge in #1 can be realized by a path, and a data attribute can be a set of paths in
#2. These are captured by Conditions (1)–(5) of the well-typed structure transformations. Condition 1 requires
an inheritance should not be replaced by associations, and Condition 2 implies that association should not be
implemented by inherence either. The falsification of Condition 3 (similarly for Condition 4) implies that D1 and
D2 are the same class. In this case if ρr (C1, a1, D1) is a suffix of ρr (C2, a2, D2) in #2, it would limit the functionality since
an instance of ρ̂(C2) can only access its associated instance of ρ̂(D2) via the instance of ρ̂(C1) linked to the instance
of ρ̂(C2). However, it is not necessary for an instance of C2 to access its associated instance of D2 via a link from
an instance of C1 to the instance of D2. Finally, Condition 5 requires that any data attribute of a class in #1 can be
“computed” by an expression of the data attributes of the classes in #2 that are the decomposition of the original
class by the transformation. Conditions (4)–(5) allow the decomposition of a single attribute into a tree of classes
and attributes. What we would like to show is that a well-typed transformation is a structure refinement.

Proposition 1 A well-typed structure transformation ρ[F] from #1 to #2 is a structure refinement.

114 L. Zhao et al.

Fig. 5. An example of structure transformation

We only consider the well-typed structure transformations in the rest of this section, and thus simply call them
structure transformations. The validity of the proposition is to be established in the following subsections in two
steps, which are to be proved in Sect. 4.4:

1. Soundness: provide a small set of rules that are structure refinements.
2. Completeness: prove that any well-typed structure transformation can be obtained by applying a sequence

of these refinement rules.

Example 2 Figure 5 illustrates a structure transformation ρ[F] in which class D corresponds to a class H, association
(C, a, D) is realized by two relational edges, and data attribute (D, x, Int) is decomposed into two paths from class
H to data types in the resulting class graph, formally

1. F " {C},
2. ρ̂(C) " C, ρ̂(D) " H,
3. ρr (C, a, D) " C. ✄ .a, ρd (D, x, Int) " {H .x1, H .b.x2},
4. ρ̂+ " ∅, ρ̄+ " {(E, y, Int)},
5. The addition operation on integers preserves the initial values of attributes: init(D.x) " init(H .x1) + init(G.x2).

4.1. Object graph transformations derived from structure transformations

In this subsection, we show, for a set X of variables, how a structure transformation ρ from class graph #1 to class
graph #2 determines a transformation ρo from the object graphs MX (#1) to the object graphs MX (#2). This is in fact
to show that the left part of the diagram in Fig. 1 commutes.

Definition 8 Let ρ be a structure transformation from class graph #1 to class graph #2 with frame F , and X be a set
of main variables. The derived object graph transformation of ρ, denoted by ρo, is a relation between object graphs
MX (#1) and MX (#2) such that for any &1 ∈ MX (#1) and &2 ∈ MX (#2), ρo(&1, &2) if the following conditions hold

1. (Type consistency) The restriction ρ̂o of ρo to the set of nodes of the object graph &1 is an injective mapping
to the set of nodes of &2 such that ρ̂o maps each object node (r, C) in &1 to a node (r′, C ′) in &2 with C ′ " ρ̂(C).

2. (Global variables preservation) For each association edge (ε, x, (r, C)) from the root in &1 where x : C ∈ X and
C is a class, the restriction ρ̄o of ρo to the edges maps it to an association edge (ε, x, ρ̂o(r, C)) in &2 (note that
ρ̂o(r, C) " (r′, C) for some r′), and ρ̄o maps each data edge (ε, x, (r, T)) in &1, where x : T ∈ X and T ∈ T , to a data
edge (ε, x, (r, T)) in &2.

3. (Association consistency) For each association attribute ((r1, C), a, (r2, D)) in &1, ρ̄o((r1, C), a, (r2, D)) is a path in &2

such that

(a) it starts from the node ρ̂o(r1, C) and ends with ρ̂o(r2, D), and

(b) hideRef(ρ̄o((r1, C), a, (r2, D))) " ρr (C, a, D)\ ✄, where hideRef(α) denotes the sequence obtained by removing all
references from the path α, and ρr (C, a, D)\ ✄ is the path obtained from the path ρr (C, a, D) by removing
all appearances of ✄.

4. (Data consistency) For each data attribute edge ((r, C), a, (v, T)) in the object graph &1, ρ̄o((r, C), a, (v, T)) is a set
of paths {(r′, C ′).β1.a1, . . . , (r′, C ′).βn.an} such that

(a) (r′, C ′) " ρ̂o(r, C),

Graph transformations for OO refinement 115

Fig. 6. R5 Forward attributes

(b) hideRef(βi) " γi\ ✄, where ρd (C, a, T) " {C ′.γi .ai | 1 ! i ! n}, and

(c) v " g(v1, . . . , vn), where (vi, Ti) " dest((r′, C ′).βi .ai) for i : 1 ! i ! n and g is the function given in the class graph
transformation ρ that calculates the data attribute to (C, a, T) in #1 from those at the destinations of
ρd (C, a, T).

4.2. Refinement rules for structure expansion

We give a set of rules in Fig. 7 which transform a class graph #1 " ⟨N1, A1, E1⟩ to another #2 " ⟨N2, A2, E2⟩. In this
table, the first and second columns are the names and descriptions of the rules. The precondition for each rule
in the third column ensures that the class graph after transforming is a well-formed one. Notice that each rule
has a frame, which is depicted in the last column, representing the unchanged class names before and after the
transformation. Here, we use C to denote the set of class names declared in #1, which equals N1 \ T .

In fact, R5.1 and R5.2 are two special cases of the general rule R5 for moving edges depicted in Fig. 6, where
each edge (Ci, bi, D) could be either an inheritance relation or an association attribute for i : 1 ! i ! n. However,
these two special rules can be used to handle edge moving in most cases.

4.3. Soundness of the rules for structure expansion

It is straightforward to prove that each rule defines a well-typed structure transformation on class graphs. Thus
each rule R determines a structure relation Ro between the object graphs of the corresponding class graphs.

Furthermore, each rule R derives a transformation Rc that transforms a command c well-formed with respect
to class graph #1 to a command Rc(c) well-formed with respect to class graph #2. That is, the variables and types
in the command are all defined in the graphs. More precisely, statements and expressions are correctly typed
[HLL06]. The derived command transformations are given in Fig. 8, where notation [D/C] denotes a substitution
for each occurrence of class name C by D, and notation [C.b/C.a] denotes a substitution for each expression of
the form e.a by another expression e.b if the static type of e is C or a subclass of C. The definitions of [C.b.a/C.a]
and [g(C.x1, · · · , C.xn)/C.x] are given similarly. Notice that in the command transformation of R6, we used the
non-deterministic multiple assignment

g(C.x1, . . . , C.xn) :" e or (C.x1, . . . , C.xn) :" (v1, . . . , vn).g(v1, . . . , vn) " e

to denote that (C.x1, . . . , C.xn) are assigned with values (v1, . . . , vn), respectively, such that g(v1, . . . , vn) " e holds. This
might be of unbounded nondeterminism, but this does not disturb the theory of UTP.

The structure refinement rules must be used together with their derived transforms on commands when we
develop an object-oriented software in an incremental and iterative development process such as RUP [Kru00].
This implies that the decomposition of low cohesive classes into simpler and more reusable classes [Lar01] and
the decomposition of functionality by delegation, must be consistently combined [HLL06].

Theorem 1 (Soundness of the rules for expansion) If rule R[F] transforms #1 to #2, then #1 ⊑I #2. Here, we use R[F] to
denote a rule R taken from R1 to R7 with frame F .

Proof. For any set of main variables X , any variable (x : T) ∈ X such that T ∈ F , we can construct a relation ρo from
M(#1)X to M(#2)X for each rule such that for any method m(u : T1; v : T2){c} defined in class P of #1 we can also define
a corresponding method m(u : T1; v : T2){Rc(c)} in class T of #2, and that the condition given in Definition 5 holds:

116 L. Zhao et al.

Fig. 7. Basic rules

Fig. 8. Command transformation

• Case R1. Construct the relation ρo such that ρo(&, &′) if and only if &′ is obtained from & by substituting each
node of the form (r, C) in & with (r, D). Notice that Rc(c) " c[D/C], so [[x.m(s; t)]]#2 ◦ ρo " ρo ◦ [[x.m(s; t)]]#1 , where ◦
denotes the composition of two relations.

• Case R2. Construct relation ρo such that ρo(&, &′) if and only if the object graph &′ is obtained from & by
substituting each edge of the form ((r, C ′), a, v), where C ′ ≼ C, with ((r, C ′), b, v). Since Rc(c) " c[C.b/C.a], we have
[[x.m(s; t)]]#2 ◦ ρo " ρo◦ [[x.m(s; t)]]#1 .

• Case R3, R4, R5.2 and R7. For each of these, the corresponding transformation is the identity transformation,
that is ρo(&, &′) if and only if &′ " &.

Graph transformations for OO refinement 117

• Case R5.1. For the class graph transformation ρ of this rule, we construct ρo such that ρo(&, &′) if and only
if the object graph &′ is obtained from & by substituting each edge of the form ((r, C ′), a, v), where C ′ ≼ C thus
there exists another edge ((r, C ′), b, v′) in &, with the edge (v′, b, v). For this, we also have Rc(c) " c[C.b.a/C.a], so
[[x.m(s; t)]]#2 ◦ ρo " ρo ◦ [[x.m(s; t)]]#1 .

• Case R6. For this case, we can construct the transformation ρo such that ρo(&, &′) if and only if the object
graph &′ is obtained from & by substituting each edge of the form ((r, C ′), x, (k, T)), where C ′ ≼ C, with a set of
edges {((r, C ′), x1, (k1, T1)), . . . , ((r, C ′), xn, (kn, Tn))}, satisfying g(k1, . . . , kn) " k. Since Rc(c) " c[g(C.x1, . . . , C.xn)/C.x], we
have [[x.m(s; t)]]#2 ◦ ρo " ρo ◦ [[x.m(s; t)]]#1 .

"
This theorem implies that all rules given in Fig. 7 are structure refinements. It also shows the commutativity of

the diagram of Fig. 1 in Sect. 1. Obviously, the structure refinement relation defined in Definition 5 is transitive.

Corollary 1 If #1 is transformed to #2 by a sequential applications of rules R1[F1], . . . , Rk[Fk], then #1 ⊑I #2, provided
F " F1 ∩ · · · ∩ Fk ̸" ∅.

4.4. Completeness of rules R1–R7 and validity of Proposition 1

We now prove the completeness of the rules R1–R7 for well-typed structure refinements. This together with the
soundness in Theorem 1 implies the validity of Proposition 1.

Theorem 2 (Completeness result I) If ρ[F] is a well-typed structure transformation from #1 to #2, there exists a finite
sequence of applications of rules R1[F1], . . . , Rk[Fk] taken from R1 to R7 that transform #1 to #2 where F ⊆ Fi for
i : 1 ! i ! k.

Proof. Given a structure transformation ρ[F], we can identify a sequence of applications of refinement rules as
follows.

1. Change each class C to ρ̂(C), by applications of R1.
2. Using Rule R6, decompose each data attribute (C, x, T) to a set of data attributes:

{(C, x1, T1), . . . , (C, xn, Tn)},

provided ρd (C, x, T) " {(C.β1.x1), . . . , (C.βn.xn)} and dest(C.βi .xi) " Ti.
3. For edges, there are two cases

(a) using R3, R4 and R5, change each data attribute (C, x, T) to a path C.β.x in ρd (C, x, T), or

(b) using applications of R2, R3, R4, R5 and R7, change each association or inheritance relation (C, a, D) to
a path ρr (C, a, D)

4. Add additional nodes and edges according to ρ̂+ and ρ̄+ by using R3 and R4.

"
From this completeness theorem and the soundness theorem, we have proved the validity of Proposition 1.

Corollary 2 (Proposition 1 holds) A well-typed structure transformation ρ[F] from #1 to #2 is a structure refinement.

Example 3 For the structure transformation illustrated in Example 2, Fig. 9 shows the applications of the rules
that transform #1 to #2.

5. Structure refinement for graph compression

In previous sections, refinement is achieved by expanding the class graph and the refinement rules are independent
of what methods would be declared in classes of the refined graph. We now consider how to compress a class graph
while preserving the provided services. Generally, a class structure can not be arbitrarily compressed since after
removing or combining classes and attributes we may lose important services determined by methods. Therefore,
the configuration of methods does matter when we want to compress a class graph, and we now extend the
definition of class graphs with methods of classes.

118 L. Zhao et al.

Step 1: Rename classes

C IntHC IntD
x R1

Γ1 Γ11

Step 2: Decompose data attributes

11Γ

12Γ

R6
C IntH

a

x1

x2

Step 3: Transform edges

12Γ

13Γ

R3;R4.2 R5.2

R3;R4.1 R5.1

C IntE

H

a
x2

x1

C IntE

H

a

x2

x1

C IntE

GH

a

b

x2
x1

C IntE

GH

a

b

x2x1

Step 4: Add extra nodes and edges

13Γ

2Γ

R4.1

C IntE

GH

a

b

y

x2x1

a a x

Fig. 9. An example

Definition 9 (Class graph with methods) A class graph with methods is represented as # " ⟨N, A, E, M⟩ where M is
a function that labels a class node with a set of methods of the form m(u : T1; v : T2){c}, or m(T1 u; T2 v){c}, where m
is the method name, u : T1 and v : T2 are the input and output parameters, and command c is the method body.

We assume that the names of methods declared in the same class are distinct. Based on this assumption, we
can prefix a method with the name of its class so that we can use M as a set of methods, and then simply use
C :: m ∈ M to denote the case that there exists a method m(u : T1; v : T2){c} ∈ M(C). Of course, each method declared
in a class graph should be well-typed [HLL06, ZZLQ06], and we only consider well-typed class graphs in the
following discussion.

5.1. Interfaces and extended structure refinement

Generally, the main method of an object-oriented program can only directly access the public methods of public
classes in the classes declaration section. We call these classes and methods that are directly accessible by the
main method the interface.

Graph transformations for OO refinement 119

Definition 10 (Interface) Let # " ⟨N, A, E, M⟩. An interface I is a pair ⟨PC, PM⟩, where

• PC ⊆ N is a set of class names
• PM ⊆ M is a set of method names, each of which has the form C :: m such that for each C :: m ∈ PM, C ∈ PC.

For interfaces I " ⟨PC, PM⟩ and I ′ " ⟨PC ′, PM ′⟩ of #, I ∩ I ′ denotes the interface ⟨PC ∩ PC ′, PM ∩ PM ′⟩, and the
predicate I ⊆ I ′ denotes (PC ⊆ PC ′) ∧ (PM ⊆ PM ′). We also assume the methods in each interface have distinct names
except those with overriding relations. That is, C :: m, D :: m ∈ PM implies m is a polymorphic method declared in
both class C and D and maybe some other classes in #. It is only a technical assumption which could simplify
our discussion without losing generality, since we can rename some methods to meet this assumption without
changing the behavior of the program. The notion of interfaces extends that of frames in the previous sections.
An interface of a class graph defines which classes and which methods in these classes are public ones and thus
accessible from outside the class graph. With the concept of interfaces, we can naturally extend the definition of
structure refinement.

Definition 11 (Extended structure refinement) Let I " ⟨PC, PM⟩ be an interface of both class graphs #1 " ⟨N1, A1,

E1, M1⟩ and #2 " ⟨N2, A2, E2, M2⟩. #2 is an I-framed structure refinement of #1, denoted as #1 ⊑I #2, if for any set X of
main variables, there exists a relation ρo from M(#1)X to M(#2)X such that for any method m(u : T1; v : T2){c1} ∈ M1(C)
of #1 with C :: m ∈ PM, there is a correspondence method m(u : T1; v : T2){c2} ∈ M2(C) of #2 such that

∀ & ∈ M(#1)X • ([[x.m(s; t)]]#2 (ρo(&)) ⊆ ρo([[x.m(s; t)]]#1 (&)))

for any (x : C) ∈ X and parameters s, t.

Obviously, if class graph #1 is refined by class graph #2 with respect to interface I , then #2 is also a refinement
of #1 with respect to any non-empty interface I ′ ⊆ I . Besides, it is easy to see that the refinement relation defined
above is a reasonable extension of that in Definition 5. In fact, the former relation corresponds to the special
case of the latter when PM includes all methods that are “definable” in classes in PC. We use ≡ to denote the
equivalence relation between class graphs with respect to refinement.

5.2. Refinement rules for removing redundant structure elements

Intuitively, we can remove classes, attributes and methods that are not related to (or referred to), either directly or
indirectly, in the interface. In other words, elements of a class graph that are of no contribution to the provision
of services can be deleted. We first formalize the definitions of the accessible nodes, edges and methods of a class
graph. For this, the following two sets are first defined. Let # " ⟨N, A, E, M⟩ be a class graph and C1, C2 ∈ N. The
set cb(C1, C2) contains the nodes that are superclasses of C1 and subclasses of C2, and eb(C1, C2) denotes the set of
inheritance relations between C1 and C2:

cb(C1, C2)
def" {C ∈ N | C ̸∈ T , C1 ≼ C ≼ C2}

eb(C1, C2)
def" {(C, ✄, D) ∈ E | C1 ≼ C, D ≼ C2}

Obviously, cb(C1, C2) and eb(C1, C2) are empty if C1 is not a subclass of C2.

Definition 12 (Directly accessible elements of expressions) Given a class graph # " ⟨N, A, E, M⟩ and a well-typed
expression e, we use nodes(e) and edges(e) to denote respectively the set of class nodes and the set of edges that
expression e directly accesses or refers to, defined as follows:

1. if e is variable x, then nodes(e) " {dtype(x)} \ T , edges(e) " ∅, that is a simple variable only refers to its type if it is
a class.

2. if e is null or a literal, then nodes(e) " edges(e) " ∅, that is a null object or a constant does not refer to any class
or edge.

3. if e is an attribute reference a of the current class C ′, and C ′′ is the superclass of C ′ such that a ∈ attr(C ′′), then
nodes(e) " cb(C ′, C ′′) ∪ {dtype(a)} \ T , edges(e) " eb(C ′, C ′′) ∪ {(C ′′, a, dtype(a))}; this means a refers to its declared type,
as well as the class where it declared, the current class and other classes and inheritance edges between them.

4. if e is e0.a, then nodes(e) " nodes(e0) ∪ cb(C ′, C ′′) ∪ {dtype(e0.a)} \ T , edges(e) " edges(e0) ∪ eb(C ′, C ′′) ∪ {(C ′′, a,

dtype(e0.a))}, where C ′ " dtype(e0) and C ′′ is the superclass of C ′ such that a ∈ attr(C ′′); that is, besides what e0 can
access, expression e0.a refers to its declared type, as well as the class where it declared, the declared type of e0

and other classes and inheritance edges between them.

120 L. Zhao et al.

5. if e is (C0)e0, then nodes(e) " nodes(e0) ∪ cb(C ′, C ′′), edges(e) " edges(e0) ∪ eb(C ′, C ′′), where C ′ " C0 ∧ C ′′ " dtype(e0) if
C0 ≼ dtype(e0), or C ′ " dtype(e0) ∧ C ′′ " C0 otherwise, this says that, besides what e0 can access, expression (C0)e0

refers to all classes and inheritance edges between C0 and the declared type of e0.
6. if e is f (e1, . . . , en), then nodes(e) " nodes(e1) ∪ . . . ∪ nodes(en), and edges(e) " edges(e1) ∪ . . . ∪ edges(en); this says that the

expression f (e1, . . . , en) refers to all classes and edges its sub-expressions can access.

Using the sets of nodes and edges that are directly referred to in expressions, we can inductively define the
sets of nodes and edges that are referred to by a command of a method, and the set of methods that are called in
a command.

Definition 13 (Directly accessible elements of commands) Given a class graph # " ⟨N, A, E, M⟩ and a well-typed
command c, we use nodes(c), edges(c) and meths(c) to denote respectively the set of class nodes, edges and methods3

c accesses or refers to directly, defined as follows:

1. skip and chaos command do not refer to any class, edge or method: if c is skip or chaos, then nodes(c) " ∅, edges(c) " ∅
and meths(c) " ∅;

2. an assignment command refers to what the two expressions can access, and all classes and inheritance edges
between the declared types of them: if c is e1 :" e2, then nodes(c) " nodes(e1) ∪ nodes(e2) ∪ cb(dtype(e2), dtype(e1)),
edges(c) " edges(e1) ∪ edges(e2) ∪ eb(dtype(e2), dtype(e1)) and meths(c) " ∅;

3. command C.new(e) refers directly to all classes and inheritance edges between C and the declared type of e
plus those that e accesses: if c is C.new(e), then nodes(c) " nodes(e) ∪ cb(C, dtype(e)), edges(c) " edges(e) ∪ eb(C, dtype(e))
and meths(c) " ∅;

4. a loop command refers directly to what the loop condition and loop body command can access: if c is b ∗ c1,
then nodes(c) " nodes(c1) ∪ nodes(b), edges(c) " edges(c1) ∪ edges(b) and meths(c) " meths(c1);

5. similarly if c is c1 ✁ b ✄ c2, then nodes(c) " nodes(c1) ∪ nodes(c2) ∪ nodes(b), edges(c) " edges(c1) ∪ edges(c2) ∪ edges(b) and
meths(c) " meths(c1) ∪ meths(c2);

6. inductively for sequential composition and nondeterministic choice, i.e. when c is of the form c1; c2 or c1 ⊓ c2,
nodes(c) " nodes(c1) ∪ nodes(c2), edges(c) " edges(c1) ∪ edges(c2) and meths(c) " meths(c1) ∪ meths(c2);

7. for a local variable declaration statement, i.e. when c is of the form var T x; c1; end x, nodes(c) " nodes(c1) ∪ {T } \ T ,
edges(c) " edges(c1) and meths(c) " meths(c1);

8. when c is a method invocation e.m(e1; e2), where the type of formal parameters e1 and e2 are respectively T1 and
T2, then

(a) the nodes that c accesses include those e, e1 or e2 can access, all classes between the types of formal and
actual parameters, or between C ′, the declared type of e, and C ′′ where m is declared.

nodes(c) " nodes(e) ∪ nodes(e1) ∪ nodes(e2) ∪ cb(C1, T1) ∪ cb(C2, T2) ∪ cb(C ′, C ′′)

(b) c accesses one single method C ′′ :: m.

meths(c) " {C ′′ :: m}

(c) the edges that c accesses include those e, e1 or e2 can access, all inheritance edges between the types of
formal and actual parameters, or between class C ′ and class C ′′.

edges(c) " edges(e) ∪ edges(e1) ∪ edges(e2) ∪ eb(C ′, C ′′) ∪ eb(C1, T1) ∪ eb(C2, T2)

where C1 " dtype(e1), C2 " dtype(e2), C ′ " dtype(e) and C ′′ is the least superclass of C ′ such that m is declared
in C ′′.

Using the above definitions we can calculate the sets of nodes and edges that are directly referred to in a
method and the set of methods that can be called in a method.

Definition 14 (Directly accessible elements of methods) Given a class graph # " ⟨N, A, E, M⟩ and any well-typed
method mth, we use nodes(mth), edges(mth) and meths(mth) to denote respectively the sets of class nodes, edges and

3 A method is accessible by a command if the command calls that method.

Graph transformations for OO refinement 121

methods that mth accesses directly, they are defined as: for a method mth that is declared as m(u : T1; v : T2){c}, then
nodes(mth) " nodes(c), edges(mth) " edges(c) and meths(mth) " meths(c).

Now we use the structure of the body command of a method to define inductively the sets of nodes and edges
that can be referred to by that method.

Definition 15 (Accessible elements of methods) Given a class graph # " ⟨N, A, E, M⟩ and a well-typed method mth,
we use Nodes(mth), Edges(mth) and Meths(mth) to denote the sets of accessible class nodes, edges and methods of mth,
respectively. These are defined as follows:

1. for any class node C ∈ N, C ∈ Nodes(mth) if there exists a finite sequence of methods [mth0, . . . , mthn](n # 0) such
that mth0 " mth, mthi ∈ meths(mthi−1)(1 ! i ! n) and C ∈ nodes(mthn).

2. for any edge edg ∈ E, edg ∈ Edges(mth) if there exists a finite sequence of methods [mth0, . . . , mthn](n # 0) such that
mth0 " mth, mthi ∈ meths(mthi−1)(1 ! i ! n) and edg ∈ edges(mthn).

3. for any method mth′ ∈ M, mth′ ∈ Meths(mth) if there exists a finite sequence of methods [mth0, . . . , mthn](n # 0) such
that mth0 " mth, mthi ∈ meths(mthi−1)(1 ! i ! n) and mth′ ∈ meths(mthn).

The nodes and edges that can be referred to in an interface are those that are related to the nodes of the
interfaces plus those that can be referred to in the methods of the interface. The idea is that nodes and edges
that cannot be referred to by the interface of a class graph are redundant and thus can be removed by structure
transformation without affecting the functionality of the graph.

Definition 16 (Accessible elements of interfaces) Given a class graph # " ⟨N, A, E, M⟩ and an interface I " ⟨PC, PM⟩
of #, we use notations Nodes(I), Edges(I) and Meths(I) to denote the sets of accessible class nodes, edges and methods
of I , respectively. These are defined as follows:

1. Nodes(I) "
⋃

{cb(C, D) | C, D ∈ PC} ∪
⋃

{Nodes(C :: m) | C :: m ∈ PM}.
2. Edges(I) "

⋃
{eb(C, D) | C, D ∈ PC} ∪

⋃
{Edges(C :: m) | C :: m ∈ PM}.

3. Meths(I) " {C :: m | ∃ D ≽ C, eb(C, D) ⊆ Edges(I), D :: m ∈ (PM ∪ Meths(PM))}.

where Meths(PM) denotes all methods accessed by some public method, that is ⋃
{Meths(P :: m) | P :: m ∈ PM}.

From the above definitions, the nodes, edges and methods that are accessible of an interface satisfy some good
properties (also called healthiness conditions) formulated in the following theorem.

Theorem 3 Let # " ⟨N, A, E, M⟩ be a class graph and I " ⟨PC, PM⟩ an interface of #, then

1. Each accessible edge of the interface starts from and ends at accessible nodes, that is for each edge (C, a, D) ∈ E,
if (C, a, D) ∈ Edges(I), then C ∈ Nodes(I), and D ∈ Nodes(I) unless D is a primitive type.

2. A class is accessible by the interface if it declares a method accessible by the interface, that is each method
C :: m ∈ M, if C :: m ∈ Meths(I), then C ∈ Nodes(I).

3. If a method can be called from the interface, then any method that overrides it through accessible inheritance
edges can also be called from the interface, that is for methods C :: m, D :: m ∈ M such that C ≽ D and
eb(D, C) ⊆ Edges(I), C :: m ∈ Meths(I) implies D :: m ∈ Meths(I).

Proof. Straightforward from the above definitions.

1. If (C, a, D) ∈ Edges(I) which equals to ⋃
{eb(P1, P2) | P1, P2 ∈ PC} ∪

⋃
{Edges(P :: m) | P :: m ∈ PM}, then either (C, a,

D) ∈ eb(P1, P2) for some P1, P2 ∈ PC or (C, a, D) ∈ Edges(P :: m) for some P :: m ∈ PM. So, either C, D ∈ cb(P1, P2) holds,
or C ∈ Nodes(P :: m) and D ∈ Nodes(P :: m) hold unless D is a primitive type. In each case, we have C ∈ Nodes(I),
and D ∈ Nodes(I) if D is not a primitive type.

2. If C :: m ∈ Meths(I), then there exists a superclass C ′ of C such that eb(C, C ′) ⊆ Edges(I) and C ′ :: m ∈ (PM ∪
Meths(PM)). If C ′ ̸" C, then eb(C, C ′) ⊆ Edges(I) implies C ∈ Nodes(I). If C ′ " C, then C :: m ∈ PM or C :: m ∈ Meths(mth)
holds for some public method mth ∈ PM. So, either C ∈ PC or C ∈ Nodes(mth). In each case, we also have
C ∈ Nodes(I).

3. For methods C :: m, D :: m ∈ M such that C ≽ D and eb(D, C) ⊆ Edges(I), if C :: m ∈ Meths(I), then there exists a
superclass C ′ of C such that eb(C, C ′) ⊆ Edges(I) and C ′ :: m ∈ (PM ∪ Meths(PM)). So, C ′ is also a superclass of D
and eb(D, C ′) ⊆ Edges(I) holds. As a result, we have D :: m ∈ Meths(I).

"

122 L. Zhao et al.

Fig. 10. Rules for removing redundant elements

An interface I is used to represent the public classes and public methods of a class graph #. Thus, Nodes(I),
Edges(I) and Meths(I) that are accessible by the interface denote the set of nodes, edges and methods that contribute
to the provision of services of #. In contrary, the other class nodes, edges and methods are redundant in that they
do not take part in the services of # with respect to I . As a result, they can be simply removed from # without
losing any functionality. This leads to the following theorem.

Theorem 4 Let # " ⟨N, A, E, M⟩ be a class graph and I " ⟨PC, PM⟩ an interface of #. If a well-typed class graph
#′ " ⟨N ′, A′, E ′, M ′⟩ is obtained from # after removing any redundant class nodes, edges and methods, that is if
#′ contains all the accessible elements of the interface: Nodes(I) ⊆ N ′ ⊆ N, Edges(I) ⊆ E ′ ⊆ E and Meths(I) ⊆ M ′ ⊆ M,
then #′ is equivalent to #, that is #′ ≡I #.

Proof. Since #′ is a subgraph of #, #′ ⊑I #. We only need to prove # ⊑I #′.
For any set of main variables X , any variable (x, P) ∈ X such that P ∈ PC, we construct a relation ρo from M(#)X

to M(#′)X such that ρo(&, &′) if and only if object graph &′ is obtained from & by deleting

• all object nodes of the form (r, C), where C ∈ N \ N ′,
• all edges of the form ((r1, D1), a, (r2, D2)) such that there exists (C1, a, C2) ∈ E \ E ′ and C1 ≽ D1 and C2 ≽ D2, and
• all data nodes related to these edges, from object graph &.

For any method m(u : T1; v : T2){c} defined in class C of # such that C :: m ∈ PM, P :: m ∈ Meth(I) is not a redundant
method, thus P :: m ∈ M ′. This means there is a corresponding method m(u : T1; v : T2){c} in class C of #′, and
[[x.m(s; t)]]#′ ◦ ρo " ρo ◦ [[x.m(s; t)]]# holds. So, # ⊑I #′. "

Note that for a well-typed class graph #, the class graph #′ obtained by removing all the inaccessible class
nodes, edges and methods from # is also well-typed. This is because those redundant elements are not referred
to by the rest part of the graph. From Theorem 4, we know that #′ is equivalent with #.

5.2.1. Rules for removing redundant elements

Let # " ⟨N, A, E, M⟩ be a class graph and I " ⟨PC, PM⟩ be an interface of #. We provide a set of rules in Fig. 10 to
remove redundant nodes, edges and methods from #. Notice that each rule has a frame, representing those class
names and method names which should remain unchanged. We use R[I] to represent a rule R with frame I . The
soundness of Rule R8 is ensured by Theorem 4. The theorem also ensures that Rule R8 is an equivalence rule.

5.3. Rules for combining classes

It is not difficult to understand that, in a class graph # " ⟨N, A, E, M⟩, a class D can be merged into another class
C in the following steps:

1. turn each outgoing (incoming) edge from (to) D into an outgoing (incoming) edge from (to) C,
2. turn each edge between C and D to a self loop edge of C, and
3. move each method declared in D to C.

We can name the combined class by C, D or any fresh class name, but we just use C in the following discussions.
Rules for merging classes are provided in Fig. 11. When merging two classes, we should discriminate two

different cases: (a) if one class is a subclass of the other, we use R9.1, R9.2, and (b) if there is no such subclass

Graph transformations for OO refinement 123

Fig. 11. Rules for combining classes

C

G

b

c

H

a

C

G

D
b

c

H

a

Fig. 12. Class combination

relation between them, we then use R9.3. We combine more than two classes to one by a number of applications
of these rules. The soundness of R9 is straightforward for each case. Also notice that R9 is an equivalence rule,
since the merging of classes does not influence the classes and methods in the interface thus does not change the
global functionality of the class graph.

6. Refinement rules for changing methods

In addition to refining the structure of class graph, we sometimes need to change a method while keeping the
class structure unaltered. In principle, this kind of refinement corresponds to the simple procedural refinement
without changing the data space [Mor94, BvW98].

For a class graph # " ⟨N, A, E, M⟩, each of the rules in Fig. 13 allows us to transform a class graph # to a graph
#′ " ⟨N, A, E, M ′⟩ without changing the set of nodes and edges. Notice that a special case of R10.1 is to rename a
method which is not polymorphic. That is, if a method C :: m does not override or is not overridden by any other
method, Rule R10.1 allows us to rename it to fresh name C :: m′ while substituting each invocation to m with an
invocation to m′ in the bodies of other methods.

It is easy to see the soundness of rules R10.1, R10.2 and R10.3. Also any class graph #′ obtained from a class
graph # by these rules is equivalent to #. The reason lies in the fact that when renaming, adding or moving up
methods according to these rules, we do not change the functionality of methods in the interface.

Theorem 5 (Soundness and equivalence) If #1 is transformed to #2 by a sequence R1[I1],, Rk[Ik] of applications of
rules R8, R9 and R10, then #1 ⊑I #2 and #2 ⊑I #1, Thus #1 ≡I #2, provided the interface I " I1 ∩ · · · ∩ Ik is not empty.

Proof. Since the refinement relation is transitive, and the soundness of R8 is ensured by Theorem 4, we only need
to prove that each rule in R9 and R10 is a sound equivalence rule. This is to prove that for each of these rules
with frame I " ⟨PC, PM⟩ that transforms # " ⟨N, A, E, M⟩ to #′ " ⟨N ′, A′, E ′, M ′⟩, any set of main variables X , and any
variable (x, C) ∈ X such that C ∈ PC, we can construct a transformation ρo from M(#)X to M(#′)X such that for any

124 L. Zhao et al.

Fig. 13. Rules for changing methods

method m(u : T1; v : T2){c} ∈ M(C) satisfying C :: m ∈ PM, there is a corresponding method m(u : T1; v : T2){ρc(c)} ∈ M ′(C),
and that the condition given in Definition 11 holds. We prove this for each of R9 and R10.1–R10.3.

• For R9, we define the transformation such that ρo(&, &′) if and only if &′ is obtained from & by substituting each
node of the form (r, D) with (r, C). With the command transformation Rc(c) " c[C/D], we have [[x.m(s; t)]]#′ ◦ ρo "
ρo ◦ [[x.m(s; t)]]#.

• For R10.1, we define ρo to be the identy transformation and thus ρo(&, &′) if and only if &′ " &. Obviously,
the semantics of methods can not be modified by consistent method renaming in a method declaration and
method invocations, so [[x.m(s; t)]]#′ " [[x.m(s; t)]]#. Thus [[x.m(s; t)]]#′ ◦ ρo " ρo ◦ [[x.m(s; t)]]#.

• For R10.2 and R10.3, we define ρo as the identity transformation such that ρo(&, &′) if and only if &′ " &. Notice
that Rc(c) " c, so we have [[x.m(s; t)]]#′ ◦ ρo " ρo ◦ [[x.m(s; t)]]# since no method in the frame is modified.

"

7. Normal forms and completeness results

This section studies the completeness of the structure refinement rules. It is difficult to establish a set of rules
that is complete in the sense that any refinement of # can be obtained by applying the rules in the set on #.
However, to demonstrate the power of the refinement rules that we have given, we show that any class graph
can be transformed into certain normal forms. We study two normal forms and show that the rules are powerful
enough for transforming any class graph to a normal form.

7.1. Two normal forms

Definition 17 (Normal forms) Let # " ⟨N, A, E, M⟩ be a class graph with an interface I " ⟨PC, PM⟩. We say # is of
Normal Form I if the following conditions hold.

1. # contains at least one class not in the interface I , that is a private class.
2. All classes of # belong to one inheritance tree, that is there exists a class C of # which is the root of the

inheritance tree such that D ≼ C for any class D of #.
3. For any inheritance relation (D, ✄, C) ∈ E, if C or D is not in the interface, this inheritance is polymorphic

meaning that some methods of the superclass C are overridden in the subclass D: ({m | C :: m ∈ M}∩
{m | D :: m ∈ M} ̸" ∅).

4. # contains no redundant nodes, edges or methods, i.e. N \ T " Nodes(I), E " Edges(I), M " Meths(I).

We say that # is of Normal Form II, if # satisfies both the following conditions.

1. All class nodes of # are public, that is N \ T " PC, and
2. # contains no redundant edges or methods: E " Edges(I), M " Meths(I).

Graph transformations for OO refinement 125

We now show that the graph compression rules are complete in that they can transform each class graph to
an equivalent graph of either of the normal forms.

Theorem 6 (Completeness result II) For each class graph # " ⟨N, A, E, M⟩ with interface I " ⟨PC, PM⟩, there exists
a class graph #′ with interface I such that

1. #′ is of either Normal Form I or Normal Form II,
2. #′ ≡I #, and
3. # can be transformed to #′ by applications of rules R2, R8, R9 and R10.

Proof. For an arbitrary class graph #, we can have the following transformations.

1. First use R8 to eliminate inaccessible nodes, edges and methods.
2. For each pair of classes, if the precondition of R9 holds, then apply R9 to combine them into one class. If it is

needed, use R2, R10.1 to rename their attributes and methods to avoid name conflicts before the combination.
3. Repeat Step 2 until each pair of classes could not be further merged even with possible renaming to avoid

name conflicts. Then we have a class graph #′.

If #′ is not Normal Form II, we need to prove #′ is in Normal Form I as the other two conditions of the
theorem obviously hold. For this we need to prove that #′ satisfies the four conditions of Normal Form I.

1. There is at least one private class in #′. Otherwise, #′ is of Normal Form II.
2. To prove the condition that all classes of #′ belong to one inheritance tree, assume #′ contains at least two

inheritance trees. Let D be a private class in #′, then there exists at least one inheritance tree that does not
contain class D. Let class C be the root of such an inheritance tree. We can use rules R2, R10.1 to rename
attributes and methods of class D (if needed) and then R9.3 to merge it into class C, since D and C are not
related by inheritance relation. This however contradicts with the fact that no pair of classes in #′ could be
further merged.

3. For the condition that inheritance relation in #′ is polymorphic unless it is associated with two public classes,
assume (C, ✄, D) is an inheritance relation in #′ and either class C or class D is a private class. If C is private,
then we can merge C into its direct superclass D by Rule R9.1. Similarly, if D is private, we could merge D into
its direct subclass C by Rule R9.2. This also contradicts with the condition that no pair of classes in #′ could
be further merged.

4. Finally, the condition that #′ contains no redundant nodes, edges or methods holds, since #′ is obtained after
applying Rule R8 to remove all those elements inaccessible from the interface.

"

This completeness result shows that the essential difference between object-oriented programming and
“procedural” programming is the mechanisms of polymorphism and dynamic procedure call binding in object-
oriented programs. We use the following example to show how a class graph can be transformed into a graph of
Normal Form I.

Example 4 Let # be the class graph in Fig. 14, with interface I " ⟨{P1, P2, P3}, {P1 :: get, P2 :: set}⟩, where the methods
set are

P1 :: get(; Int v){v :" a} C :: get(; Int v){var D o; D.new(o); o.set(1;); v :" a + o.d ; end o}
D :: set(Int u;){d :" u} P2 :: set(Int u;){(var Int x; p.get(; x); d :" x; end x) ✁ b2 ✄ d :" u}
K :: get(; Int v){v :" k} G :: get(; Int v){v :" g}
P3 :: get(; Int v){v :" k ✁ b3 ✄ (var P1 o; C.new(o); o.get(; v); end o)}

is transformed to a graph of Normal Form I by following steps, that are depicted in Fig. 15.

1. Remove redundant nodes and edges: It is easy to verify that (H, h, Bool) ̸∈ Edges(I) and H ̸∈ Nodes(I), we thus
remove them by Rule R8.2 and R8.1, respectively. The other nodes, edges and methods are accessible from
the interface thus could not be further deleted.

126 L. Zhao et al.

C GP2 P3

Int

a

b2

h

b3

P1 KD

p

Bool H

d
g

k

get

get get get

set

set

get

Fig. 14. A class graph #

2. Merge classes: First we merge class D into class P1, since D is a private class D ̸∈ PC. The set of methods
become

P1 :: get(; Int v){v :" a} P1 :: set(Int u;){d :" u}
C :: get(; Int v){var P1 o; P1.new(o); o.set(1;); v :" a + o.d ; end o}
P2 :: set(Int u;){(var Int x; p.get(; x); d :" x; end x) ✁ b2 ✄ d :" u}
K :: get(; Int v){v :" k} G :: get(; Int v){v :" g}
P3 :: get(; Int v){v :" k ✁ b3 ✄ (var P1 o; C.new(o); o.get(; v); end o)}

Use Rule R10.1 to rename methods K :: get, G :: get and P3 :: get to K :: get′, G :: get′ and P3 :: get′. After that, we
merge class G, which is also a private class, into P1. We now have a graph #′ that is of Normal Form I. The
methods of final graph are

K :: get′(; Int v){v :" k}
P1 :: get(; Int v){v :" a} P1 :: set(Int u;){d :" u} P1 :: get′(; Int v){v :" g}}
C :: get(; Int v){var P1 o; P1.new(o); o.set(1;); v :" a + o.d ; end o}
P2 :: set(Int u;){(var Int x; p.get′(; x); d :" x; end x) ✁ b2 ✄ d :" u}
P3 :: get′(; Int v){v :" k ✁ b3 ✄ (var P1 o; C.new(o); o.get(; v); end o)}

7.2. Eliminating polymorphism

With the rules of structure refinement given so far, we cannot eliminate all the private classes from any graph
since these classes may contain polymorphic methods which are not allowed to be merged or removed by any
refinement rule. As for this, a normal form may consist of either only public classes or an inheritance tree with at
least one private class.

We now consider the elimination of polymorphic inheritance relations such that every private class in a class
graph could be merged into public classes. For this purpose, we prove a pair of rules in Fig. 16 to combine classes
with overriding methods. The soundness of each rule is easy, and it is clear that each rule is an equivalence rule.

Theorem 7 (Completeness result III) For each class graph # " ⟨N, A, E, M⟩ with interface I " ⟨PC, PM⟩, there exists
a class graph #′ with interface I such that

1. #′ is in Normal Form II,
2. #′ ≡I #, and
3. # could be transformed to #′ by sequential applications of rules R2, R8, R9, R10 and R11.

Proof. From Theorem 6, we can apply rules R2, R8, R9 and R10 to transform # to a class graph #′′ that is of either
Normal Form I or Normal Form II. If #′′ is not of Normal Form II, then each private class D in #′′ is associated
with another class C by a polymorphic inheritance relation. We could further merge D into C by Rule R11. Repeat

Graph transformations for OO refinement 127

R8.2 R8.1

C GP2 P3

Int

a

b2

h

b3

P1 KD

p

Bool H

d g

k

get

get get get

set

set

get

C GP2 P3

Int

a

b2 b3

P1 KD

p

Bool H

d g

k

get

get get get get get

set

set

get

C GP2 P3

Int

a

b2 b3

P1 KD

p

Bool

d g

k

get

get

set

set

get

R9.3

R10.1

C GP2 P3

Int

a

b2 b3

P1 KD

p

Bool

d g

k

get

get get get

get

set

set

get

C GP2 P3

Int

a

b2 b3

P1 K

p

Bool

d g

k

get

get

get

get get

set

set

set

get

R9.3

C GP2 P3

Int

a

b2 b3

P1 K

p

Bool
Bool

d g

k

get

get get

set

set

get

get C GP2 P3

Int

a

b2 b3

P1 K

p

d g

k

get
set

set

get'

get' get'
C P2

P3

Int

a

b2

b3

P1

K

p

Bool

d g

k

get, set, get'

get'

get'

Fig. 15. Transform to Normal Form I

Fig. 16. Rules for eliminating polymorphism

128 L. Zhao et al.

C P2

P3

Int

a

b2

b3

P1

K

p

Bool

d
g

k

get, set, get'

get

get'

get'

set

Fig. 17. #′ in Normal Form I

this step and we can get a class graph #′ without private classes, thus it is of Normal Form II. Obviously, #′ also
satisfies both the second and the third conditions in this theorem. "

This completeness result means that any object-orient program can be transformed to a “procedural” program
with data sharing via references. We use the following example to show how a class graph can be transformed
into a Normal Form II.

Example 5 Let # be the class graph in Fig. 14, with interface I " ⟨{P1, P2, P3}, {P1 :: get, P2 :: set}⟩. In Example 4, we
transformed # to #′ in Normal Form I by applications of rules R8, R9 and R10. From Fig. 17, the methods of #′

are
K :: get′(; Int v){v :" k}
P1 :: get(; Int v){v :" a} P1 :: set(Int u;){d :" u} P1 :: get′(; Int v){v :" g}
C :: get(; Int v){var P1 o; P1.new(o); o.set(1;); v :" a + o.d ; end o}
P2 :: set(Int u;){(var Int x; p.get′(; x); d :" x; end x) ✁ b2 ✄ d :" u}
P3 :: get′(; Int v){v :" k ✁ b3 ✄ (var P1 o; C.new(o); o.get(; v); end o)}

#′ could be further transformed to a normal form II by the following steps, depicted in Fig. 18.

1. Eliminate polymorphism by merging private class C into P1. A new boolean attribute b is declared in class P1.
The methods become

K :: get′(; Int v){v :" k}
P1 :: get(; Int v){v :" a ✁ b ✄ (var P1 o; P1.new(o); o.b :" true; o.set(1;); v :" a + o.d ; end o)}
P1 :: set(Int u;){d :" u} P1 :: get′(; Int v){v :" g}
P2 :: set(Int u;){(var Int x; p.get′(; x); d :" x; end x) ✁ b2 ✄ d :" u}
P3 :: get′(; Int v){v :" k ✁ b3 ✄ (var P1 o; P1.new(o); o.b :" false; o.get(; v); end o)}

2. Eliminate polymorphism by merging private class K into P1. A new boolean attribute b′ is declared in class P1.
Thus we get a class graph #′′ in Normal Form II containing no private classes. The methods of #′′ are

P1 :: get(; Int v){v :" a ✁ b ✄ (var P1 o; P1.new(o); o.b :" true; o.set(1;); v :" a + o.d ; end o)}
P1 :: set(Int u;){d :" u} P1 :: get′(; Int v){v :" g ✁ b′ ✄ v :" k}
P2 :: set(Int u;){(var Int x; p.get′(; x); d :" x; end x) ✁ b2 ✄ d :" u}
P3 :: get′(; Int v){v :" k ✁ b3 ✄ (var P1 o; P1.new(o); o.b :" false; o.get(; v); end o)}

Corollary 3 Let # be a class graph, Main the main class with the main variables X and main(){c} the main method.
We use # • Main to denote the class graph with interface I " ⟨{Main}, {Main::main}⟩. Then # • Main can be transformed
to a single class with name Main, with main(){c} as the only public (i.e. observable) method.

This corollary implies that object-oriented programming and procedural programming have equal expressive
power in regards to computability. The point here is not to show this equivalence, but to show the power of the
structure refinement rules.

Graph transformations for OO refinement 129

R 1 1 . 1

C P2

P3

I n t

a

b2

b3

P1

K

p

B o o l

d g

k

g e t , s e t , g e t '

g e t s e t

g e t '

g e t '

P2

P3

I n t

a

b2

b3

P1

K

p

B o o l

d g

k

g e t , s e t , g e t '

s e t

g e t '

g e t '

b

R 1 1 . 2

P2

P3

I n t

a

b2

b3

P1

K

p

B o o l

d g

k

g e t , s e t , g e t '

s e t

g e t '

g e t '

b

P2 P3

I n t

a

b2

b3

P1

p

B o o l

d

g

k
g e t , s e t , g e t '

s e t g e t '

b

b '

Fig. 18. Transform to Normal Form II

8. Conclusions

We have proposed a graph theoretical approach to studying the relation between transformations in class
declarations and changes in method definitions. The main purpose is to make the semantics and refinement of
object-oriented programs easier to understand and more operational. We believe this is important for development
of tool support of object-oriented system development by model transformations [Ser].

This paper has substantially extended the previous workshop version [LLZ06] by providing refinement rules
for removing classes, attributes and inheritance, and rules for compressing long paths to shorter paths, combining
classes. Hence not only “true” refinements are treated, but also “abstractions” that preserve functionality. We
also provide the notion of interface which represents the services a class graph provides to outside. Based on this
concept, a refinement is defined with respect to a certain interface, illustrating not only what classes but also what
methods are public ones. A crucial progress made in this version is the introduction to the two normal forms and
completeness results.

Another contribution of this paper is the proposal of an operational semantics for object-oriented programs
in the graph theoretical notation. This allows us to understand the execution of an object program in the same
way as we understand an imperative program by taking graphs as the states. In our future work, we will study
this operational semantics together with the study of operations and properties of graphs. This will lead to the
development of a Hoare-logic for object-oriented programs with predicates on graphs.

Acknowledgments

We would like to thank the three anonymous referees for their spirited and detailed comments to bring this paper
to its present form, and the editors of this issue for their effort in ensuring this paper to come out as its right
form. We wish to thank Zhenbang Chen, Volker Stolz and Naijun Zhan for their careful reading and comments
that helped us to remove some errors and improve the presentation. We also owe thanks to our colleagues Xin
Chen, Zhenbang Chen, He Jifeng, Wei Ke, Xiaoshan Li, Joseph Okika, Anders P. Ravn, Volker Stolz, Lu Yang
and Naijun Zhan for the collaboration in the research on rCOS.

References

[AC96] Abadi M, Cardeli L (1996) A theory of objects. Springer, Heidelberg
[AdB94] America P, de Boer F (1994) Reasoning about dynamically evolving process structures. Form Aspects Comput 6(3):269–316

130 L. Zhao et al.

[AL97] Abadi M, Leino R (1997) A logic of object-oriented programs. In: Bidoit M, Dauchet M (eds) TAPSOFT ’97: theory and
practice of software development, 7th international joint conference. Springer, Heidelberg, pp 682–696

[BHTV03] Baresi L, Heckel R, Thöne S, Varró D (2003) Modeling and validation of service-oriented architectures: Application vs. style. In:
Proceedings of ESEC/FSE 03 European software engineering conference and ACM SIGSOFT symposium on the foundations
of software engineering. ACM Press, pp 68–77

[BHTV04] Baresi L, Heckel R, Thöne S, Varró D (2004) Style-based refinement of dynamic software architectures. In: WICSA ’04:
Proceedings of the fourth working IEEE/IFIP conference on software architecture (WICSA’04). IEEE Computer Society,
Washington DC, pp 155–164

[BMvW00] Back R, Mikhajlova A, von Wright J (2000) Class refinement as semantics of correct object substitutability. Form Aspects
Comput 2:18–40

[BRJ99] Booch G, Rumbaugh J, Jacobson I (1999) The unified modelling language user guide. Addison-Wesley, Reading
[BSC03] Borba P, Sampaio A, Cornelio M (2003) A refinement algebra for object-oriented programming. In: Cardelli L (ed) Proceedings

of ECOOP 2003, Lecture Notes in Computer Science 2743. Springer, Heidelberg, pp 457–482
[BvW98] Back R, von Wright LJ (1998) Refinement calculus. Springer, Heidelberg
[CD94] Cook S, Daniels J (1994) Designing object systems: object-oriented modelling with syntropy. Prentice-Hall, Englewood Cliffs
[CHH+07] Chen Z, Hannousse AH, Van Hung D, Knoll I, Li X, Liu Y, Liu Z, Nan Q, Okika J, Ravn AP, Stolz V, Yang L, Zhan N (2007)

Modelling with relational calculus of object and component systems-rCOS. In: The common component modeling example:
comparing software component models. Springer, Heidelberg (To be published as a Chapter of a Volume of Lecture Notes in
Computer Science)

[CJ06] Chen Y, Sanders J (2006) Compositional reasoning for pointer structures. In: Proceedings of 8th international conference
on mathematics of program construction (MPC06), Lecture Notes in Computer Science, vol 4014. Springer, Heidelberg, pp
115–139

[CMR96] Corradini A, Montanari U, Rossi F (1996) Graph processes. Fundam Inf 26(3,4):241–265
[CN99] Cavalcanti A, Naumann D (1999) A weakest precondition semantics for an object-oriented language of refinement. In: World

congress on formal methods (2), Lecture Notes in Computer Science, vol 1709. Springer, Heidelberg, pp 1439–1460
[Col94] Coleman D et al (1994) Object-oriented development: the FUSION method. Prentice-Hall, Englewood Cliffs
[DD93] Dürr E, Dusink EM (1993) The role of VDM++ in the development of a real-time tracking and tracing system. In: Woodcock

J, Larsen P (eds) Proceedings of FME’93, Lecture Notes in Computer Science, vol 670. Springer, Heidelberg
[Ed97] Rozenberg G (ed) (1997) Handbook of graph grammars and computing by graph transformation, vol 1, Foundations World

Scientific
[EEPT06] Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fundamental theory for typed attributed graphs and graph transformation

based on adhesive HLR categories. Fundam Inf 74(1):31–61
[EHHS00] Engels G, Hausmann JH, Heckel R, Sauer S (2000) Dynamic meta modeling: a graphical approach to the operational semantics

of behavioral diagrams in uml. In: Proceedings of UML 2000, The unified modeling language, Lecture Notes in Computer
SCience, vol 1939. Springer, Heidelberg, pp 323–337

[GMB04] Gheyi R, Massoni T, Borba P (2004) An abstract equivalence notation for object models. Electron Note Theor Comput Sci
130:3–21

[GRPPS98] Große-Rhode M, Parisi-Presicce F, Simeoni M (1998) Spatial and temporal refinement of typed graph transformation systems.
In: Proceedings of mathematical foundations of computer science, Lecture Notes in Computer Science, vol 1450. Springer,
Heidelberg, pp 553–561

[HH98] Hoare CAR, He J (1998) Unifying theories of programming. Prentice-Hall, Englewood Cliffs
[HH99] Hoare CAR, He J (1999) A trace model for pointers and objects. In: Proceedings of ECOOP’99, Lecture Notes in Computer

Science, vol 1628. Springer, Heidelberg, pp 1–17
[HHS86] He J, Hoare CAR, Sanders JW (1986) Data refinement refined. In: Proceedings of ESOP 86, Lecture Notes in Computer

Science, vol 213. Springer, Heidelberg, pp 187–196
[HLL06] He J, Li X, Liu Z (2006) rCOS: A refinement calculus for object-oriented systems. Theor Comput Sci 365(1–2):109–142
[JO04] Johnsen EB, Owe O (2004) Object-oriented specification and open distributed systems. In: From object-orientation to formal

method, Lecture Notes in Computer Science, vol 2635. Springer, Heidelberg, pp 137–164
[KKR06] Kastenberg H, Kleppe A, Rensink A (2006) Defining object-oriented execution semantics using graph transformations.

In: Proceedings of the 8th IFIP international conference on formal methods for open object-based distributed systems
(FMOODS’06), Lecture Notes in Computer Science, vol 4037. Springer, Heidelberg, pp 186–201

[Kru00] Kruchten P (2000) The rational unified process: an introduction. Addison-Wesly, Reading
[Lar01] Larman C (2001) Applying UML and patterns. Prentice-Hall International, Englewood Cliffs
[Lei98] Rustan K, Leino M (1998) Recursive object types in a logic of object-oriented programming. Nordic J Comput 5(4):330–360
[LHLC03] Liu Z, He J, Li X, Chen Y (2003) A relational model for formal requirements analysis in UML. In: Proceedings of ICFEM03,

Lecture Notes in Computer Science, vol 2885. Springer, Heidelberg, pp 641–664
[LLZ06] Liu X, Liu Z, Zhao L (2006) Object-oriented structure refinement—a graph transformational approach. Electron Notes Theor

Comput Sci 187:145–159
[Mor94] Morgan CC (1994) Programming from specifications. Prentice Hall, Englewood Cliffs
[MS97] Mikhajlova A, Sekerinski E (1997) Class refinement and interface refinement in object-oriented programs. In: Proceedings of

FME’97, Lecture Notes in Computer Science, vol 1313. Springer, Heidelberg, pp 82–101
[Nau94] Naumann D (1994) Predicate transformer semantics of an Oberon-like language. In: Olderog E-R (ed) Proceedings of

PROCOMET’94. North-Holland, Amsterdam, pp 467–487
[PHM99] Poetzsch-Heffter A, Muller P (1999) A programming logic for sequential Java. In: Swierstra SD (ed) Proceedings of programming

languages and systems (ESOP’99), Lecture Notes in Computer Science, vol 1576. Springer, Heidelberg, pp 162–176
[Sek96] Sekerinski E (1996) A type-theoretical basis for an object-oriented refinement calculus. In: Kent SJH (ed) Formal methods and

object technology. Springer, Heidelberg
[Ser] Tata Consultancy Services. Mastercraft. http://www.tata-mastercraft.com/

Graph transformations for OO refinement 131

[Smi00] Smith G (2000) The object-Z specification language. Kluwer, Dordrecht
[TR05] Taentzer G, Rensink A (2005) Ensuring structural constraints in graph-based models with type inheritance. In: Cerioli M (ed)

Fundamental approaches to software engineering (FASE), Edinburgh, UK, Lecture Notes in Computer Science, vol 3442.
Springer, Heidelberg, pp 64–79

[WF02] Wermelinger M, Fiadero JL (2002) A graph transformation approach to software architecture reconfiguration. Sci Comput
Program 44(2):133–155

[ZZLQ06] Zhao L, Zhao X, Long Q, Qiu Z (2006) A type system for the relational calculus of object systems. In: Proceedings of
international conference on engineering complex computer systems. IEEE Computer Soceity, pp 189–198

Received 14 January 2007
Accepted in revised form 20 December 2007 by B. K. Aichernig, E. A. Boiten, M. J. Butler, J. Derrick and L. Groves
Published online 8 January 2008

