
Front. Comput. Sci., 2012, 6(1): 17–39

DOI 10.1007/s11704-012-2901-5

rCOS: a formal model-driven engineering method for
component-based software

Wei KE1,5, Xiaoshan LI2, Zhiming LIU 3, Volker STOLZ3,4

1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China

2 Faculty of Science and Technology, University of Macau, Macau, China

3 UNU-IIST, Macau, China

4 Department of Informatics, University of Oslo, Oslo 0316, Norway

5 Macao Polytechnic Institute, Macau, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract Model-driven architecture (MDA) has become

a main stream technology for software-intensive system

design. The main engineering principle behind it is that the

inherent complexity of software development can only be

mastered by building, analyzing and manipulating system

models. MDA also deals with system complexity by provid-

ing component-based design techniques, allowing indepen-

dent component design, implementation and deployment, and

then system integration and reconfiguration based on com-

ponent interfaces. The model of a system in any stage is an

integration of models of different viewpoints. Therefore, for

a model-driven method to be applied effectively, it must pro-

vide a body of techniques and an integrated suite of tools

for model construction, validation, and transformation. This

requires a number of modeling notations for the specifica-

tion of different concerns and viewpoints of the system. These

notations should have formally defined syntaxes and a unified

theory of semantics. The underlying theory of the method is

needed to underpin the development of tools and correct use

of tools in software development, as well as to formally ver-

ify and reason about properties of systems in mission-critical

applications. The modeling notations, techniques, and tools

must be designed so that they can be used seamlessly in sup-

porting development activities and documentation of artifacts

Received July 20, 2011; accepted October 8, 2011

E-mail: z.liu@iist.unu.edu

in software design processes. This article presents such a

method, called the rCOS, focusing on the models of a system

at different stages in a software development process, their se-

mantic integration, and how they are constructed, analyzed,

transformed, validated, and verified.

Keywords component-based design, models, model trans-

formations, verification, tool support

1 Introduction

Software engineering was born with and has been growing

because of the “software crisis”. The root of the crisis is the

inherent complexity of software, and the major cause of the

complexity “is that the machines have become several orders

of magnitude more powerful” [1] within decades.

1.1 Software complexity

Software complexity is characterized in terms of four funda-

mental attributes of software [2–5]: the complexity of the do-

main application, the difficulty of managing the development

process, the flexibility possible to offer through software, and

the problem of characterizing the behavior of software sys-

tems [3]. The first attribute focuses on the difficulty of un-

derstanding the application domain (by the software designer

in particular), capturing and handling the ever changing re-

quirements. The second concerns the difficulty to define and

18 Front. Comput. Sci., 2012, 6(1): 17–39

manage a development process that has to deal with changing

requirements for a software project that involves a large team

composed of software engineers and domain experts possi-

bly in different geographical places. The third is about the

problem of making the right design decisions among a wide

range of possibilities that have conflicting features. The de-

sign decisions have to deal with changing requirements and

aiming to achieve the optimal performance to best support

the requirements of different users. The final attribute of soft-

ware complexity pin-points the difficulty in understanding

and modeling the semantic behavior of software for software

analysis, validation and verification for correctness, and reli-

ability assurance.

We are now facing an even greater scale of complexity with

modern software-intensive systems [6]. We see the applica-

tion of these systems in our everyday life, such as in trans-

portation, health, banking, and enterprise applications. These

systems provide their users with a large variety of services

and features. They are becoming increasingly distributed, dy-

namic, and mobile. Their components are deployed over large

networks of heterogeneous platforms and thus the interop-

erability of the distributed components becomes important,

for instance, eHealth systems. In addition to the complexity

of functional structures and behaviors, modern software sys-

tems have complex aspects concerning organizational struc-

tures (i.e., system topology), adaptability, interactions, secu-

rity, real-time, and fault-tolerance.

A complex system is open to total breakdown [7], and

we suffer from the long lasting software crisis1) . Conse-

quences of system breakdowns are sometimes catastrophic

and very costly, e.g., the famous Therac-25 Accident 1985–

1987 [8], Ariane-5 Explosion in 1996 [9], and the yearly cost

of about USD 60 billion of the U.S. economy due to soft-

ware bugs alone2). Also the software complexity attributes

are the main source of unpredictability of software projects;

software projects fail due to our failure to master the com-

plexity [10]. Given that the global economy, as well as our

everyday life, depends on software systems, we cannot give

up advancing the theories and engineering methods to master

the increasing complexity of software development.

1.2 Formal model-driven development

The model-driven approach, known as model-driven archi-

tecture (MDA) [6,11,12], proposes as the key engineering

principles for mastering software complexity and improv-

ing dependability and predictability through building system

models in all stages of the system development. Key features

of the approach are: abstraction for information hiding in or-

der to focus on a concern at a time, decomposition to divide

and conquer, and incremental development so as to allow the

use of different techniques and tools. Although there has been

a lot of hype about MDA, there is a huge gap between the re-

ality and the potential that model-driven software engineering

offers to improve the safety and predictability of software sys-

tems. The main reason is that it lacks systematic techniques

and tool support with an integrated theoretical underpinning

for the models and their relations. These are needed to make

the models analyzable and the engineering process repeat-

able.

On the other hand, ensuring the correctness of computer

systems is the main goal of formal theories and methods. In

the past 40 years or so, a rich body of formal theories and

techniques have been developed. They have made signifi-

cant contribution to program behavior characterization and

understanding, and recently there has been a growing effort

in development of tool support for verification and reason-

ing. However, these techniques and tools have been applied

in an ad hoc manner to modules, algorithms or programs at

the source code level. The experience, e.g., in [5], and in-

vestigation reports on software failures, such as those of the

Therac-25 Accident 1985–1987 [8] and the Ariane-5 Explo-

sion in 1996 [9], show that the cause of a simple bug that

can lead to catastrophic consequences is very complex and

ad hoc application of formal specification and verification to

programs or to models of programs at one level of abstraction

will not be enough to detect and remove these causes. Formal

modeling and verification have to be systematically used in

all stages of a development process along with safety anal-

ysis that identifies risks, vulnerabilities and consequences of

possible risk incidents. In other words, techniques of formal

modeling have to be systematically used in a model-driven

development process to avoid and remove errors through the

tool support in model construction, manipulation (transfor-

mation), analysis, and verification.

1.3 The aim and theme of rCOS

The aim of the rCOS project is to research, develop, and teach

a method and its tools for predictable development of reliable

software. Its scope covers theories, techniques, and tools for

modeling, analysis, design, validation, and verification. rCOS

1)Booch even calls this state of affairs “normal” [3].
2)See http://www.cse.lehigh.edu/∼gtan/bug/softwarebug.html

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 19

contributes to innovation of software engineering by combin-

ing existing theories and techniques, rather than developing

new theories and techniques. The rCOS method has a strong

theme of component-based and model-driven software devel-

opment, allowing techniques and tool support to be integrated

into engineering processes and have formal theories unified

to underpin and justify the development of tools and their

integrated applications. A distinguishing feature of rCOS is

the formal model of system architecture that is essential for

model compositions, transformations, and integrations in a

development process.

With rCOS we promote the idea that formal methods are

not only, or even mainly, for producing software that is safety

critical (and so must be shown to satisfy certain properties

before being commissioned); they are just as much needed

when producing a software system that is too complex to be

produced without tool assistance.

1.4 Organization

We present the rCOS approach to handling software com-

plexity in Section 2, thus motivating the different models

in rCOS. In Section 3, we discuss the semantic foundation

of these models and point the reader to the literature on the

relevant theories and techniques. Section 4 defines the mod-

els of components, their refinement relations and composi-

tions. Section 5 discusses how the different models are built

and validated in a development process. Concluding remarks

are given and future work is discussed in Section 6.

2 Mastering complexity with rCOS

This section discusses the main ideas behind the development

of the rCOS method that aim at mastering software complex-

ity by separation of concerns, decomposition, and rigorous

use of abstraction. Essentially, rCOS proposes a method for

model-driven and component-based development techniques

and tools to be seamlessly used in a development process.

2.1 rCOS support to model-driven development

The rCOS method follows the fundamental idea of model-

driven development that all development activities are orga-

nized based on building models of software artifacts.

Like in all mature engineering disciplines, system mod-

els are built to gain understanding and confidence in require-

ments and designs.

Furthermore, rCOS provides explicit means through its

modeling notations, refinement calculus and tools to support

the following principles of model-driven development and

formal methods.

• Abstraction for information hiding when building a

model so as to be well-focused and problem oriented

with regard to the concerns at the development stage. As

shown by the vertical dimension in Fig. 1, the models

have different levels of abstraction at different stages,

and they are related by the formally defined refinement

relation [13–15] among models to ensure correctness

by design.

• Decomposition to divide and conquer for incremental

and compositional design and analysis. At any level of

abstraction, the model of the system is a composition

of a number of components at a lower level. A compo-

nent at a higher level is designed as a composition of

a number of components at a lower level [13,16]. The

architectural (or hierarchical) dependency among com-

ponents is represented by the horizontal dimension of

Fig. 1.

• Separation of concerns to allow the separation of design

or implementation of different viewpoints of a compo-

nent at a certain level of abstraction. This is achieved

through multi-view modeling. At any level of abstrac-

tion, the model of a component consists of a consistent

set of viewpoint models, including the model of types

(and classes when OO is used), static model of interface

data functionality, model of interactions with the en-

vironment, reactive behavior model, etc. (see the third

dimension of Fig. 1). These different views are modeled

in different notations, Hoare-logic [17] for data func-

tionality, sequence diagrams for interactions and state

Fig. 1 rCOS modeling framework

20 Front. Comput. Sci., 2012, 6(1): 17–39

machines for reactive behavior, using different

techniques and tools for reasoning and verifica-

tion [14,18]. The consistency of the models of these

viewpoints is defined and can be checked automati-

cally. This is the key for rCOS to support the integrated

use of different techniques and tools in a design pro-

cess [19,20].

• Model transformations to automate refinement of mod-

els from one level to another for correct design, and

abstraction of models for reasoning and verification. A

model transformation may generate proof obligations,

i.e., conditions on the models before and after the trans-

formation. Such a transformation thus brings in tech-

niques and tools of reasoning and verification for prov-

ing these obligations.

• Use of formalization or rigor for the models to be an-

alyzable and process repeatable. This requires a uni-

fied semantic theory for underpinning the integrated

tool support to different techniques used on the different

viewpoint models [21–23].

In summary, the discussion shows that in the rCOS

method, it is as important for the development and usage

of tools as for the correct construction of models (and pro-

grams). In an rCOS design process, model transformations

automate design activities, driving the process and linking the

different tools for reasoning and verification of properties of

the models. We will later, in Section 5, show the main model

transformations in an rCOS design process.

2.2 rCOS support to component-based development

In rCOS, we explicitly specify the contracts of the interfaces

of components [11] so that

• Components can be used in third party compositions,

without the need to know the design and implementa-

tion details. Components are designed and implemented

to be deployed independently.

• The design, proofs, and code of components can be

reused in different applications.

The software architecture is always important in model-

driven development and therefore model-driven design is

known as model-driven architecture. To support seamless

model-driven development, rCOS provides a component-

based architecture definition language, called rCOSP. The

static architectural view of the model of a component is

shown in Fig. 2, and its behavior is defined later. How-

ever, only when the ideas, principles, techniques, and tools

for component-based modeling are integrated into a model-

driven development process, that defines a flow of activities

of model constructions, transformations, and validation, the

software complexity can be effectively handled and the qual-

ity of the software can be improved (see Section 5).

Fig. 2 rCOS component architecture — static view

2.3 The format of component specifications in rCOSP

Modern programming languages provide structures and

mechanisms that are abstract enough to se used in formal

specifications. For example, the class structures, data and be-

havior encapsulation and inheritance have the same expres-

sive power as the schemas, classes or modules, and the im-

port mechanisms in Z [24] and VDM [25] specification lan-

guages. Similar to JML [26], rCOSP proposes a Java-style

specification language. But it allows specifications of com-

ponents as well as classes, predicative specification of func-

tionality as well as program commands and interactions and

reactive behavior specification. The obvious advantage is that

it is understandable to both formal method people and practi-

cal software engineers.

The format of a component specification in rCOSP is

shown in Fig. 3, and it is explained below.

In rCOSP, the architectural operators of “parallel compo-

sition”, “plugging”, “disjoint union”, and “coordination” are

defined [13,16]. Their semantics is defined in rCOS and the

laws are proven in rCOS calculus. In the rest of this paper, we

will concentrate on the rCOS semantics and calculus.

• Interfaces of components The provided interface

declares a list of methods or services that can be invoked or

requested by clients. The required interface is optional and

when it is empty the specified component is called a closed

component, otherwise an open component. Both provided and

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 21

Fig. 3 Format of rCOS components

required interfaces allow definitions of state variables. A

component can also have an internal interface that declares

the methods private to the component, and thus they can only

be called by the provided methods, the private methods them-

selves, and the actions (to be defined later).

• Data functionality The data functionality of each pro-

vided method and private method is defined in their bodies,

and its specification is given in the rCOS OO specification

language. The rCOS OO specification language specifies the

functionality of a method at different levels of abstraction,

from predicate specification in the form of unifying theories

of programming (UTP) designs

precondition � postcondition

to program code [22]. The specification

m() { precondition � postcondition }
means that when method m() is invoked, if the input pa-

rameters and the current state of the component satisfy the

precondition, the execution of the invocation will terminate

and the final state satisfies the postcondition. At the level of

program code, invocations of the methods in the required in-

terface, as well as those in the provided interface and the pri-

vate methods, can occur in the bodies of the provided meth-

ods. The private methods of the interface class form the in-

ternal interface of the component.

• Actions In a component, internal autonomous actions

are allowed and they are specified as guarded designs and

implemented as guarded commands, which are formally de-

fined in Section 3. Such an action can be executed atomically

in a state in which its guard holds.

• Interaction protocols A component is reactive and con-

trols access to the services it provides. In the above speci-

fication format, the interaction protocol of the provided in-

terface specifies the constraints on the order in which the

environment calls the provided methods. It is specified as

a set of traces of interactions defined by regular expres-

sions. It is known that regular expressions have limited ex-

pressive power. In general, languages generated by finite

state machines with guarded transitions, traces of CSP pro-

cesses [27,28], or interface automata [29] can be used. Sim-

ilarly, the protocol of the required interface specifies the re-

quirements on how the required component should provide

the services. Obviously, the required protocol is determined

by the protocol of the provided interfaces and its functionality

is implemented by the interface class.

• Class structure and data types Fields of compo-

nent interfaces can be of either primitive data types (inte-

gers, Booleans, etc.) or classes in OO programming lan-

guages. The declarations at the bottom of Fig. 3 define such

classes, and they are formalized as the class declaration sec-

tion in rCOS, and can be represented graphically by a UML

class diagram.

Example 1 The specification below specifies the behavior

of a memory cell. It provides two methods for writing a value

to and reading the content from the memory cell of type Z, re-

quiring that the first operation has to be a write operation.

component M {
provided interface MIF {

Z d;
W(Z v) { d:=v }
R(; Z v) { v:=d }
protocol { ?W({?W,?R})* }

}
}

To illustrate some of the architectural operators of rCOS,

we consider a faulty memory cell f M in which a fault

may autonomously occur to corrupt the content of the mem-

ory. For this, we specify an internal autonomous action f ault

that corrupts the contents.

component fM {
provided interface fMIF {

Z d;

22 Front. Comput. Sci., 2012, 6(1): 17–39

W(Z v) { d:=v }

R(; Z v) { v:=d }

actions { fault { b’�b } }

protocol { ?W({?W,?R})* }

}

}

To build a fault-tolerant implementation of the memory M

using three faulty memory cells, we design the majority vot-

ing component that is an open component.

component V { // a connector

provided interface VIF {

W(Z v) { fM1.W(v); fM2.W(v); fM3.W(v) }

R(; Z v) { // majority voting

v:=vote(fM1.R(v), fM2.R(v), fM3.R(v))

}

protocol { ?W({?W,?R})* }

}

required interface { // union of fM1, fM2, and fM3

protocol { /* interleaving of all fMi’s protocols */ }

}

}

We use renaming to define additional faulty memory cells

f Mi as

f M[f Mi.W/W, f Mi.R/R].

We compose the three faulty memory components f M1 ‖
f M2 ‖ f M3 and then plug the composed component into

component V to obtain the fault-tolerant component V �
f M1 ‖ f M2 ‖ f M3. Fig. 4 shows the architecture. The veri-

fication of fault-tolerance requires the assumption that at any

time the content of at most one of the faulty memory cells is

corrupted, and this requires use of auxiliary variables in the

specification [30].

Note that autonomous state changes can happen. These ac-

tive internal actions are the effect of a coordination imple-

mented by an active process that keeps calling enabled meth-

ods of the component. We allow the explicit specification of

active processes (see Section 4) that are used to pass data

between components and coordinate the behavior of compo-

nents through synchronization [14,16]. In fact, we could have

specified the fault action f ault as a method f ault() in the pro-

vided interface of f M, and then specify a process Fault that

keeps invoking f ault(). The effect of this is defined by the

coordination composition f M � Fault in Section 4.

Fig. 4 rCOS component architecture of fault-tolerant memory

3 Unifying theories for component-based
software modeling

The rCOS method supports programming software compo-

nents for different systems, including sequential, concurrent,

distributed, and reactive systems. It allows different program-

ming paradigms too, including modular (procedural), object-

oriented, and service-based programming. The model of a

component is separated into a number of related models of

different concerns, including static structure, static data func-

tionality, interaction protocol, and dynamic control behav-

ior. This separation of concerns is crucial to a) control the

complexity of the models, and b) allow the use of different

techniques and tools of modeling, analysis, design, and veri-

fications appropriate for the different models. This requires a

unified semantic theory of models of programs.

To support model-driven development, models of com-

ponents built at different development stages are related so

that properties established for a model at a higher level of

abstraction are preserved by the lower level refined mod-

els. Therefore, the unified modeling theory must be equipped

with a refinement calculus. The rCOS theory is based on the

UTP [31]. This section presents this theory and its use in link-

ing different theories.

3.1 Designs of sequential programs

We first introduce a unified theory of imperative sequential

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 23

programming. In this programming paradigm, a program P

is defined by a set of program variables, called the alphabet

of P, denoted by αP, and a program command c written in

the syntax below:

c ::= x := e | c; c | c � b � c | c � c | b ∗ c, (1)

where e is an expression and b a boolean expression; c1�b�c2

is the conditional choice equivalent to “if b then c1 else c2” in

other programming languages; c � c is the non-deterministic

choice that is used as an abstraction mechanism; b ∗ c is iter-

ation equivalent to “while b do c”.

A sequential program P is regarded as a closed program

that given initial values for its variables (that form an initial

state), the execution of its command c will change them into

some possible final values, called the final state of the pro-

gram, if the execution terminates. We follow UTP to define

the semantics of programs in the above simple syntax as re-

lations between the initial and final states.

• States We assume an infinite set of names X repre-

senting state variables with an associated value space V . We

define a state of X as a function σ : X → V and use

S to denote the set of all states of X . This allows us to

study all the programs written in our language. For a subset

X of X , we call the restrictions S |X of S on X the states

of X. Note that state variables include both variables used in

programs and auxiliary variables needed for defining seman-

tics and specifying properties of programs. In particular, for

a program, we call S |αP the states of program P.

• State properties and state relations A state property is

a subset of the states S and can be specified by a predicate

over X , called a state predicate. For example, x > y + 1 de-

fines the set of states σ such that σ(x) > σ(y) + 1 holds. We

say that a state σ satisfies a predicate F, denoted by σ |= F,

if it is in the set defined by F.

A state relation R is a relation over the states S , i.e., a

subset of the Cartesian product S ×S , and can be specified

by a predicate over the state variables X and their primed

version X ′ = {x′ | x ∈ X }, where X ′ and X are disjoint

sets of names. We say that a pair of states (σ,σ′) satisfies a

relation R(x1, . . . , xk, y′1, . . . , y
′
n) if

R(σ(x1)/x1, . . . , σ(xk)/xk, σ
′(y1)/y′1, . . . , σ

′(yn)/y′n)

holds, denoted by (σ,σ′) |= R. Therefore, a relational pred-

icate specifies a set of possible state changes. For example,

x′ = x+1 specifies the possible state changes from any initial

state to a final state in which the value of x is the value of

x in the initial state plus 1. However, x′ � x + 1 defines the

possible changes from an initial state to a state in which x has

a value not less than the initial value plus 1. A state predicate

and a relational predicate only constrain the values of vari-

ables that occur in the predicates, leaving the other variables

to take values freely. Thus, state predicate F can also be inter-

preted as a relational predicate such that F holds for (σ,σ′)
if σ satisfies F. In addition to the conventional propositional

connectors ∨, ∧, and ¬, we also define the sequential compo-

sition of relational predicates as the composition of relations

R1; R2 =̂ ∃x0.R1(x0/x
′) ∧ R1(x0/x), (2)

where x and x′ represent the set of all state variables and

their primed versions in R1 and R2 and the substitutions are

element-wise substitutions. Therefore, a pair of states (σ,σ′)
satisfies R1; R2 iff there exists a state σ0 such that (σ,σ0) sat-

isfies R1 and (σ0, σ
′) satisfies R2.

•Designs A semantic model of programs is defined based

on the way we observe the execution of programs. For a se-

quential program, we observe what possible final states a pro-

gram execution reaches from an initial state, i.e., the relation

between the starting states and the final states of the program

execution.

Definition 1 (Designs) Given a finite set α of program vari-

ables (as the alphabet of a program in our interest), a state

predicate p and a relational predicate over α, we use the pair

(α, p � R) to represent a program design. The relational pred-

icate p � R is defined by p ⇒ R that specifies a program that

starts from an initial state σ satisfying p and if its execution

terminates, it terminates in a state σ′ such that (σ,σ′) |= R.

Such a design does not observe the termination of program

executions and it is a model for reasoning about partial cor-

rectness. When the alphabet is known, we simply denote the

design by p � R. We call p the precondition and R the post-

condition of the design.

To define the semantics of programs written in Syntax (1),

we define the following operations on designs over the same

alphabet.

x := e =̂ true � x′ = e
∧

y∈α,y�xy′ = y,

c1; c2 is defined by Equation (2),

c1 � b � c2 =̂ b ∧ c1 ∨ ¬b ∧ c2,

c1 � c2 =̂ c1 ∨ c2,

b ∗ c =̂ (c; b ∗ c) � b � skip,

(3)

where we have skip =̂ true � ∧x∈α(x′ = x). Also we have

chaos =̂ f alse � true.

24 Front. Comput. Sci., 2012, 6(1): 17–39

However, for the semantics definition to be sound, we need

to show that the set D of designs is closed under the opera-

tions defined in Equation (3), i.e., the predicates on the right-

hand-side of the equations are equivalent to designs of the

form p � R. Notice that the iterative command is inductively

defined. Closure requires the establishment of a partial order

� that forms a complete partial order (CPO) for the set of

designs D .

Definition 2 (Refinement of designs) A design Dl = (α,

pl � Rl) is a refinement of a design Dh = (α, ph � Rh), if

∀x, x′. ((pl ⇒ Rl)⇒ (ph ⇒ Rh))

is valid, where x and x′ represent all the state variables and

their primed versions in Dl and Dh.

We denote the refinement relation by Dh � Dl. The refine-

ment relation says that any property satisfied by the “higher

level” design Dh is preserved (or satisfied) by the “lower

level” design Dl. The refinement relation can be proved us-

ing the following theorem.

Theorem 1 Dh � Dl when

1) weakening the precondition: ph ⇒ pl, and
2) strengthening the postcondition: pl ∧ Rl ⇒ Rh.

The following theorem shows that � is indeed a “refine-

ment relation between programs” and forms a CPO.

Theorem 2 The set D of designs and the refinement rela-

tion � satisfy the following properties:

1) D is closed under the sequential composition “;”, con-

ditional choice “ � b � ” and non-deterministic choice

“�” defined in Equation (3),
2) � is a partial order on the domain of designs D ,
3) � is preserved by sequential composition, conditional

choice, and non-deterministic choice, i.e., if Dh � Dl

then for any D

D; Dh � D; Dl, Dh; D � Dl; D,

Dh � b � D � Dl � b � D, Dh � D � Dl � D,

4) (D,�) forms a CPO and the recursive equation b ∗ D =

(D; b∗D)�b�skip has a smallest fixed point and which

may be calculated from the bottom element chaos in

(D,�).

For the proof of the theorems, we refer to the book on

UTP [31]. D1 and D2 are equivalent, denoted as D1 = D2 if

they refine each other, e.g., D1�D2 = D2�D1, D1�b�D2 =

D2�¬b�D1, and D1�D2 = D2 iff D1 � D2. Therefore, the re-

lation � is fundamental for the development of the refinement

calculus to support correctness by design in program devel-

opment, as well as for defining the semantics of programs.

When refining a higher level design to a lower level de-

sign, more program variables are introduced or types of pro-

gram variables are changed, e.g., a set variables implemented

by a list. We may also compare designs given by different

programmers. Then we must relate programs with different

alphabets.

Definition 3 (Data refinement) Let Dh = (αh, ph � Rh)

and Dl = (αl, pl � Rl) be two designs. Dh � Dl if there is

a design (αh ∪αl, ρ(αl, α
′
h)) such that ρ; Dh � Dl; ρ. We call ρ

a data refinement mapping.

• Designs of total correctness The designs defined above

do not support reasoning about termination of program exe-

cution. To observe execution initiation and termination, we

introduce a boolean state variable ok and its primed counter-

part ok′, and lift a design p � R to T (p � R) defined below:

T (p � R) =̂ ok ∧ p⇒ ok′ ∧ R.

This predicate describes the execution of a program in that

if the execution starts successfully (ok = true) in a state σ

such that precondition p holds, the execution will terminate

(ok′ = true) in a state σ′ for which R(σ,σ′) holds. A design

D is called a complete correctness design if T (D) = D. No-

tice that T is a healthy lifting function from the domain D

of partially correct designs to the domain of complete correct

designs T (D) in that T (T (D)) = T (D). The refinement re-

lation can be lifted to the domain T (D), and Theorem 1 and

2 both hold. For details of UTP, we refer to the book [31]. In

the rest of the paper, we assume the complete correctness se-

mantic model, and omit the lifting function T in the discus-

sion.

• Linking theories We can unify the theories of Hoare-

logic [17] and the predicate transformer semantics of Dijk-

stra [32]. The Hoare-triple {p}D{r} of a design D is defined

to be p ∧ D⇒ r′, where p and r are state predicates and r′ is

obtained from r by replacing all the state variables in r with

their primed version.

Given a state predicate r, the weakest precondition of the

postcondition r for a design D, wp(p � R, r), is defined to be

p ∧ ¬(R;¬r). Notice that this is a state predicate.

This unification allows the use of the laws in both theories

to reason about program designs within UTP.

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 25

3.2 Designs of object-oriented programs

We emphasize the importance of a semantic theory for con-

cept clarification, development of techniques and tool support

for correcting by design and verification. The semantic the-

ory presented in the previous subsection needs to be extended

to define the concepts of classes, objects, methods, and OO

program execution. The execution of an OO program is more

complex than that of a traditional sequential program because

the execution states have complex structures and properties of

related objects. The semantics of OO programs has to cohe-

sively define and treat

• the concepts of object heaps, stacks, and stores,
• the problems of aliasing,
• subtyping and polymorphism introduced through the

class inheritance mechanism, and
• dynamic typing of expression evaluation and dynamic

binding of method invocation.

Without an appropriate definition of the execution state,

the classic Hoare-logic cannot be used to specify OO pro-

gram executions. Consider two classes C1 and C2 such that

C1 is a subclass of C2 (denoted by C1 � C2), and variables

C1 x1 and C2 x2 of the classes, respectively. Assume a is an

attribute of C2 and thus also an attribute of C1, the following

Hoare-triple holds when x1 and x2 do not refer to the same

object (i.e., they are not aliases of the same object), but does

not necessarily hold if they refer to a same object:

{x2.a = 4} x1.a := 3 {x2.a = 4}.
If inheritance allows attribute hiding in the sense that the

attribute a of C2 can be redeclared in its subclass C1, even the

following Hoare-triple does not generally hold:

{x1.a = 3} x2 := x1 {x2.a = 3}.
Therefore, the following fundamental backward substitu-

tion rule does not generally hold for OO programs:

{Q[e/le]} le := e {Q}.
In order to allow the use of OO design and program-

ming for component-based software development, rCOS ex-

tends the theory of designs in UTP to a theory of OO de-

signs. The theory includes an UTP-based denotational se-

mantics [15,22], a graph-based operational semantics of OO

programs [23] and a refinement calculus [15] of OO de-

signs. We only give a summary of the main ideas and we refer

to the publications for technical details which are of less in-

terest for the general reader.

• OO specification in rCOS The rCOS OO specification

language is defined in [22]. Similar to Java, an OO program P

consists of a list ClassDecls of class declarations and a main

program body Main. Each class in ClassDecls is of the form:

class M [extends N]

private T11 a11 = d11, . . . , T1n1 a1n1 = d1n1 ;

protected T21 a21 = d21, . . . , T2n2 a2n2 = d2n2 ;

public T31 a31 = d31, . . . , T3n3 a3n3 = d3n3 ;

method m1 (T11 x1; T12 y1) { c1}
· · ·
m� (T�1 x� ; T�2 y�) { c� }

Therefore, a class can declare at most one direct super-

class using “extends”, some attributes with their types and

initial values, and methods with their signatures and body

commands. Types include classes and a set of assumed prim-

itive data types such as integers, Booleans, characters, and

strings. The scopes of visibility of the attributes are defined

by the “private”, “protected”, and “public” keywords. We can

also have different scopes of visibility for the methods, but

we assume all methods are public for simplicity. A method

can have a list of input parameters and return parameters

with their types. We use return parameters, instead of return

types of methods to a) avoid the use of method invocations

in expressions so that evaluation of expressions have no side

effect, and b) give us the flexibility in specifications that a

method can have a number of return values.

The main program body Main declares a list vars of vari-

ables, called the program global variables with their types and

initial values, and a command c. We can thus denote the main

program body as a pair (vars, c) in our discussion. One can

view the main program body as a class Main:

class Main { private vars; method main(){c} }

A command in a method, including the main method, is

written in the following syntax:

• expressions: e ::= x | a | null | this | e.a | (C)e | f (e)
• assignable expressions: le ::= x | e.a
• commands: c ::= skip | chaos | var T x; c; end x |

c; c | c � b � c | c � c | b ∗ c |
e.m(e; le) | le := e | C.new(le)

Notice that the creation of a new object C.new(le) is a com-

mand not an expression. It returns in le the object newly cre-

ated and plays the same role as le = new C() in Java or C++.

• Objects, types, and states An object has an identity, a

state and a behavior. We use a designated set REF to rep-

26 Front. Comput. Sci., 2012, 6(1): 17–39

resent object identities. An object also has a runtime type.

Thus, we define an object by a triple o = (r,C, σ) of its iden-

tity r, runtime type C, and state σ. The state σ is a typed

function
σ : A (C)→ O ∪ V ,

where

• O is the set of all objects of all classes,

• V the value space of all the primitive data types,

• A (C) is the set of names of the attributes of C, includ-

ing those inherited from all its superclasses, and

• σ maps an attribute a to an object or value of the type

of a declared in C.

Therefore, an object o has a recursive structure, and can

be represented by a rooted-labeled-directed graph, called an

object graph [15,23], in which

• The root represents the object labeled by its runtime

type,

• Each outgoing edge is labeled by an attribute of the ob-

ject and leads to a node that is either an object or a

value, and

• Each object node is the root of a subgraph representing

that object.

In an object graph, all value nodes are leaves. An ob-

ject graph can also be represented by a UML object dia-

gram [15], but UML object diagrams do not have the proper-

ties of the mathematical structure of rooted-labeled-directed

graphs needed for formal reasoning and analysis. Further-

more, the types in an object graph together with labels for

the attributes form a class graph that is called the type graph

of the object that the object graph represents [15,23].
• States of programs Given an OO program P =

ClassDecls •Main, a global state of P is defined as a map-

ping σ : vars → O ∪ V that assigns each variable x ∈ vars

an object or a value depending on the type of x. Taking Main

as a class, a global state of P is thus an object of Main and

can be represented as an object graph, called a global state

graph. During the execution of the main method, the identity

of the object representing the state will never be changed, but

its state will be modified in each step of the execution. All

the global state graphs have the same type graph. The type

graph of the program can be statically defined from the class

declarations ClassDecls. Its UML counterpart is the UML

class diagram of the program in which classes have no meth-

ods. For example, Fig. 5 is a global state of the accompanied

program outline, and its type graph (and the corresponding

UML class diagram) is given in Fig. 6.

Fig. 5 An example of object graph

Fig. 6 An example of class graph and diagram

Global states are enough for defining a UTP-based denota-

tional semantics [22] and a “big step semantics” of the pro-

gram in which executions of intermediate execution steps and

the change of locally declared variables are hidden. To define

a small step operational semantics, we need to represent the

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 27

stack of the local variable declarations to characterize the ex-

ecution of var T x = x0, where T can either be a class or a

data type, and x0 is the declared initial value of x. For this,

we extend the notation of global state graphs by introduc-

ing edges labeled by a designated symbol $. The execution

of var T x = x0 from a state graph G adds a new root node

n′ to G that has an outgoing edge labeled by $ to the root n

of G and another outgoing edge labeled by x to x0. We can

understand this as pushing a new node on top of G with one

outgoing edge labeled by $ to the root of G and another la-

beled by x to its initial value. Such a state graph contains a

$-path of scope nodes, called the stack. Executing the com-

mand end x from such a state graph pops out the root together

with its outgoing edges. Figure 7 shows an example of a state

graph that characterizes the local scopes below:

var z = o2, x = o3; var x = o2; var z = 3, y = o1,

where o1, o2, and o3 are objects referred to by the variables y,

z, and x in their scopes, respectively.
• Semantics We explain the semantics informally, but

precisely. Both a denotational semantics and an operational

semantics can be defined by what changes the execution of

a command makes on a given state graph. This can be easily

understood with our graph representation of states. Given an

initial state graph G

• assignment: le.a := e first evaluates e on G as a node n′

of G and then swings the a-edge of the target node of le

in G to the node n′;

• object-creation: C.new(le.a) makes an object graph of

C according to the initial values of its attributes, such

that the root n′ is not in G, and then swings the a-edge

of the target node of le in G to the node n′;

Fig. 7 An example of state graph with local scopes

• method invocation: e.m(e1; le.a) first records e, e1, and

le to this, the formal value parameter of m() and y∗, re-

spectively, then executes the body of m(), returns the

value of the formal return parameter of m() to the actual

return parameter y∗.a which is the initial le.a that might

be changed by the execution, roughly that is

var this = e, in = e1, y
∗ = le, return;

c; y∗.a := return;

end this, in, y∗, return

where in and return are the formal parameters of m().

Then conditional choice, non-deterministic choice and it-

erative statements can be defined inductively. For a denota-

tional semantics, a partial order has to be defined with that a

unique fixed-point of the iterative statements and recursive

method invocations can be defined. The theory of denota-

tional semantics is presented in [22] and the graph-based op-

erational semantics is given in [23].

• OO refinement OO refinement is studied at three lev-

els in rCOS: refinement between whole programs, refinement

between class declarations (called structure refinement), and

refinement between commands. The refinement relation be-

tween commands takes exactly the same view as in the pre-

vious subsection about traditional sequential programs that

the execution of a program command is a relation between

states. A command cl is a refinement of a command ch, de-

noted by ch � cl, if for any given initial state graph G, any

possible final state G′ of cl is also a possible final state of

ch. This definition takes care of non-determinism and a re-

fined command is not more non-deterministic than the orig-

inal command. However, refinement between commands in

OO programming only makes sense under the context of a

given list of class declarations ClassDecls. Under such a

given context some variables and method invocations in a

command c might not be defined. In this case, we treat the

command to be equivalent to the chaos, which can be re-

fined by any command under the same context. To compare

two commands under different class contexts, we use the ex-

tended notation of data refinement and relate the context of cl

to that of ch by a class (graph) transformation.

A program Pl = ClassDeclsl • Mainl is a refinement of a

program Ph = ClassDeclsh •Mainh, if there is a graph trans-

formation from the class graph of Pl to that of Ph such that

the command of Mainl is a refinement of the command of

Mainh.

An essential advantage of OO programming is that classes

can be reused in different applications that are programmed

by different main methods. Classes can also be extended for

application evolution. The classes of an application program

are in fact the metamodel of the structure or organization of

the application domain in terms of concepts, objects and their

relations and behavior. On the other hand, the main method

28 Front. Comput. Sci., 2012, 6(1): 17–39

of the program is the automation of the application business

processes (i.e., use cases) via the control of the objects’ be-

havior. Of course, different structures provide different func-

tionalities and thus different use cases, the same use case can

also be supported by different structures. The structure re-

finement in rCOS characterizes this fundamental feature of

OO programming.

Definition 4 (OO structure refinement) A list ClassDeclsl

of class declarations is a refinement of a list ClassDeclsh

of class declarations if for any main method Main,

ClassDeclsh • Main � ClassDeclsl • Main.

This means that a refined list of class declarations has more

capacity in providing more and better services.

In the paper [15], we give a systematic study of the combi-

nation of class refinement and command refinement and de-

velop a graph-based OO refinement calculus. It gives a full

formalization of OO program refactoring [33] by a group of

simple rules of class graph transformations, including adding

classes, attributes, methods, decomposition, and composi-

tion of classes, promoting methods from subclasses to super

classes, from private to protected and then to public.

The combination of class graph transformations with com-

mand transformations formalizes the design patterns for class

responsibility assignments for object-oriented design, includ-

ing in particular the expert patterns, low coupling, and high

cohesion patterns [34]. The use of these patterns is an essen-

tial practice in OO program design [14]. The combination of

class graph transformations and command transformations is

illustrated in Fig. 8. It shows that given a class graph transfor-

mation ρ from CG to CG1, we can derive a transformation ρo

from an instance object graph OG of CG to an instance object

graph OG1 of CG1 and transformation ρc on commands. Then

ρ is a class refinement if the diagram commutes for all OG of

CG and all commands c.

Fig. 8 Class graph transformations and command transformations

The refinement calculus is proved to be sound and rela-

tively complete in the sense that the rules allow us to trans-

form the class graph of a program to a tree of inheritance, and

with the derived transformation rules on the main method, the

program can be refined to an equivalent program that only has

the main class. Thus each OO program can be transformed to

an equivalent procedural program [15].

3.3 Concurrent programs

The programs that have been considered so far in this section

are sequential programs. For such a program, our semantic

definition only concerns the relation between the initial and

final states and termination. In general, a concurrent program

consists of a number of processes, each executes a sequence

of actions of computation. However, these processes interact

with each other to exchange data and to synchronize their be-

havior. Termination of the processes is usually not a required

property, though the enabling condition and termination of

execution of individual actions are essential for the execution

of all processes to make progress, that is, to have no livelock

or deadlock.

There are two different paradigms of programming inter-

action and synchronization, shared memory-based program-

ming and message-passing programming. We define a se-

mantics for concurrent programs with shared variables and

for reactive programs with message passing in Section 4.

• Concurrent program with shared variables In general,

a concurrent program can be considered as a set of atomic

actions programmed in a concurrent programming language

that change a set of variables. The set of actions can be por-

tioned into a number of processes [30,35] that can be exe-

cuted on a single processor system through a scheduler or a

multiple processor system.

Like a sequential programming command, the execution of

an atomic action changes the current state of the program to

another state. This data functionality of an action can thus be

specified as a design p � R. However, the execution requires

resources that might be occupied by other processes or a syn-

chronization condition. Then the execution is suspended in

a waiting state. For allowing the observation of the waiting

state, we introduce the Boolean state variables wait and wait′

and define the following lifting function on designs:

H (D) =̂ wait′ � wait � D,

meaning that no more execution can proceed in a waiting

state. Then, we call a design D a reactive design if H (D) =

D. Notice that H (H (D)) =H (D).

Theorem 3 (Reactive designs) The domain of reactive de-

signs has the following closure properties:

H (D1 ∨ D2) =H (D1) ∨H (D2),

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 29

H (D1; D2) = H (D1); H (D2),

H (D1 � b � D2) = H (D1) � b �H (D2).

Given a design D and a state predicate g, we call g & D a

guarded design and its meaning is defined by

g & D =̂ D � g � (true � wait′).

Theorem 4 If D is a reactive design, so is g & D.

We use g & (p � R) to denote g & H (p � R), where it can

be proved H (p � R) = wait ∨ p � wait′ � wait � R. This

guarded design specifies that if the guard condition g holds

the execution of design proceeds from non-waiting state and

the execution is suspended otherwise. It is easy to prove that

a guarded design is a reactive design.

Theorem 5 (Guarded designs) For guarded designs, we

have

g1 & D1 ∨ g2 & D2 = g1 ∨ g2 & ((D1 ∨ D1) � g1 ∧ g2 �

(D1 � g1 � D2)),

g1 & D1 � b � g2 & D2 = (g1 � b � g2) & (D1 � b � D2),

g1 & D1; g2 & D2 = g1 & (D1; g2 & D2).

Corollary 1 For the disjunction and sequential composi-

tion, we have

g & D1 ∨ g & D2 = g & (D1 ∨ D2),

g & D1; D2 = g & (D1; D2).

This theorem is important as it lays down the foundation

for defining concurrent programming languages. It says that

in general a concurrent program P is a set of atomic actions

and each action is a guarded command g & c where c is a

command in the following syntax:

c ::= x := e | c; c | c � b � c | c � c | g & c | b ∗ c, (4)

where the semantics of a command is defined inductively

from

x := e =̂H (true � x′ = e
∧

y∈α,y�x y′ = y).

The semantics and reasoning of concurrent programs writ-

ten in such a powerful language is quite complicated. The

semantics of an atomic action is not generally equal to a

guarded design of the form g & p � R. This imposes dif-

ficulty to separate the design of the synchronization condi-

tions (i.e., the guards) from the design of the data functional-

ity. Therefore, most concurrent programming languages only

allow guarded commands of the form g & c such that no

guards are in c anymore. A set of such atomic actions can

also be represented as a Back’s action system [36], a UNITY

program [35], and a TLA specification [37].
A concurrent program can be represented as

P = (vars, init, A),

where vars is the set of program variables (not including ok

and wait), init the initial condition defining the allowable ini-

tial states, and A the set of atomic actions. For a state σ over

vars∪ {ok,wait}, an action a ∈ A is said to be enabled at σ if

a[σ(x)/x]⇒ wait′ = f alse, disabled otherwise.

Definition 5 (Semantics of concurrent programs) Let

P = (vars, init, A) be a concurrent program. The seman-

tics of P is defined by a pair (divergence(P), f ailure(P)) of

divergences and failures, where

1) A divergence in divergence(P) is a finite execution se-

quence σ0
a1−−→ σ1

a2−−→ · · · an−−→ σn where n � 0 and σi

(0 � i � n) are states over vars ∪ {ok,wait}, such that

there exists 0 � k � n and for all 0 � i � k,

(a) σ0 is an allowable initial state, σ0 |= init,
(b) for any state transition σi−1

ai−−→ σi, ai is enabled

at σi−1,
(c) the state change made by each state transition

σi−1
ai−−→ σi conforms to the specification of

the action ai, i.e., changes the state according

(σi−1, σi) |= ai, and
(d) there exists k � n, σ0

a1−−→ σ1 · · ·σk−1
ak−−→ σk and

σk is a divergent state, i.e., σk(ok) = f alse.

2) The set f ailure(P) contains all the pairs (tr, X) where tr

is a finite execution sequence of P and X ⊆ A such that

one of the following conditions holds

(a) tr is empty denoted by ε and there exists an al-

lowable initial state σ0 such that a is disabled at

σ0 for any a ∈ X,
(b) tr ∈ divergence(P) and X can be any subset of A,
(c) tr = σ0

a1−−→ · · · ak−−→ σk and for any σ in the se-

quence, σ(ok) = true and σk(wait) = f alse, and

a is disabled at σk.

The semantics takes both traces and data into account. X

in (tr, X) ∈ f ailure(P) is called a set of refusals after the

execution sequence tr. We call the subset Trace(P) = {tr |
(tr, <>) ∈ f ailure(P)} of execution traces the normal execu-

tion traces.

Definition 6 (Refinement of concurrent systems) Let

Pl = (vars, initl, Al) and Ph = (vars, inith, Ah) be two pro-

30 Front. Comput. Sci., 2012, 6(1): 17–39

grams. Pl is a refinement of Ph if

initl =⇒ inith, g(Al) ⇐⇒ g(Ah), next(Al) =⇒ next(Ah),

where g(Al) and g(Ah) are the disjunctions of the guards of

the actions of Al and Ah, respectively, and

next(Al) =
∨

a∈Al
guardl(a) ∧ bodyl(a),

next(Ah) =
∨

a∈Ah
guardh(a) ∧ bodyh(a),

and guardl(a) and bodyl(a) (or guardh(a) and bodyh(a)) de-

note the guard and the body of actions a in Al (or Ah), respec-

tively.

The first condition ensures that the allowable initial states

of Pl are allowable for Ph; the second ensures that Pl is not

more likely to deadlock; and the third guarantees that Pl is

not more non-deterministic, thus not more likely to diverge,

than Ph. Notice that we cannot weaken the guards of the ac-

tions in a refinement as otherwise some safety properties can

be violated. This semantics unifies the theories of refinement

in [30,35–37].

Example 2 We give an example of a concurrent program

which models the interaction between the memory compo-

nent in Example 1 and the processor controller.

program Memory-Processor {
Z v, d;
bool start = false, write = true, read = false, ready = true;
actions {
Wm { write & (d:=v; ready:=true) } // memory executes write
Rm { read & (v:=d; ready:=true) } // memory executes read
Wp {

ready & (if � start then start:=true; (v’ in Z); write:=true)
} // requests a write
Rp { (start ∧ ready) & (read:=true) } // requests a read

}
}

Design and verification of concurrent programs are chal-

lenging and the scalability issue of the techniques and tools

is fundamental. The key to scalability is compositionality

and reuse of design, proofs, and verification algorithms. De-

composition of a concurrent program leads to the notion of

reactive programs, that we model as components in rCOS.

4 Models of components

In general, a reactive program interacts with its environ-

ment. Such a program K has two kinds of actions, the inter-

face actions K.IF and the internal actions K.iA. Both kinds

of actions change the state of the program when they are

executed. However, an internal action can be executed au-

tonomously when it is enabled, but the environment and pro-

gram K must be synchronized on the execution of an inter-

face action. There are quite a few programming paradigms

such as channel-based and method invocation-based pro-

gramming. There are mainly two kinds of abstract models

of reactive program, channel/event-based processes [27,38]

algebras and I/O automata [39]. All these models provide ab-

stract representation of interaction actions, but when message

passing is involved the relation between input and output val-

ues are modeled at a low level of granularity. For example in

CSP [27] or CCS [38], input is represented as c?x (or c(x)

in CCS) and output by c!(e) (or c(e), respectively). This has

a limited scalability when modeling programs with synchro-

nized method invocations.
In rCOS, we define two kinds of reactive programs, that

we call components and processes. A component provides

services represented as methods to be called by the environ-

ment. However, it can also have internal actions that change

its state. Processes do not provide services but only make in-

vocations to components following its own flow of control so

as to coordinate the behavior and pass data among compo-

nents. Processes implement business workflows.

4.1 Components

We first consider closed components that only provide ser-

vices but do not require services from other components.

Such a component K has a set K.F of variables (also called

fields), a provided interface K.pIF, an internal set of au-

tonomous actions K.iA, and a set K.iIF of private methods

called the internal interface such that

• An initial condition K.init defines the allowable initial

states of the component,

• An interface, either K.pIF or K.iIF, is a set of method

signatures of the form, m(in; out) with possible input or

output parameters that are typed,

• Each method signature m() is given a body that is a

guarded command written in Syntax (4), extended with

method invocations n(e; y), where n() is in K.pIF ∪
K.iIF,

• Each action name a in K.iA is given a body that is a

guarded command (so an action can be seen as a method

without parameters).

It is required that K.pIF ∩ K.iIF = ∅.
Informally speaking, a component K repeatedly accepts

requests (invocations) from the environment to its enabled

services (or methods) in K.pIF to execute, or executes an

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 31

enabled action of its own, until no provided methods or ac-

tions that are enabled. The formal abstract semantics, how-

ever, only concerns the interaction behavior of K with the

environment. We define an observable transition relation, de-

noted by σ
e−−→ σ′, for an event in pIF, if there exists a se-

quence a1 . . . an (possibly empty) of events in K.iA, such that

σ
e−−→ σ1

a1−−→ · · · an−−→ σ′.
Definition 7 (Semantics of components) The semantics

of K is again defined by a pair of failure set f ailure(K) and

divergence set divergence(K), where

• divergence(K) is a set of traces over method invoca-

tions m(v; u), where m() ∈ K.pIF such that there is a

sequence of state transitions σ0
e1−−→ · · · ek−−→ σk and

σk(ok) = f alse.
• f ailure(K) consists of the pairs (tr, X), where tr =

a1 . . . an (n � 0) is a trace and X a set of invocations

m(v; u) to methods in K.pIF, such that one of the fol-

lowing conditions holds.
1) The trace is a divergence, i.e., tr ∈ divergence(K)

and X is any set of invocations to methods in

K.pIF.

2) There exists an execution sequenceσ0
a1−−→ · · · an−−→

σ′ such that there exists an internal action a ∈
K.iA enabled at σ′ and at least one invocation to

the provided methods in pIF is enabled. In this

case σ′ is a stable state in which not only inter-

nal actions are enabled, and X can be any set of

invocations to methods in K.pIF.

3) There exists an execution sequenceσ0
a1−−→ · · · an−−→

σ′ such that there exists no internal action enabled

at σ′ and all actions in X are disabled.
4) There exists an execution sequenceσ0

a1−−→ · · · an−−→
σ′ such that only internal actions are enabled at

σ′. In this case σ′ is a livelock (or deadlock if no

action enabled at all), and X can be any set of in-

vocations to methods in K.pIF.

Example 3 The memory component M in Example 1 can

be defined by the initial condition init = ¬start, then

M.pIF = {W(Z v),R(; Z v)} such that

W(Zv){true&(d := v; start := true)}
R(; Zv){start&v := d}

The fault-prone memory f M is obtained from M by adding

the internal action f ault.

4.2 Refinement between closed components

Refinement between two components Kh and Kl compares

the services that they provide to the clients.

Definition 8 (Refinement between components) A com-

ponent Kl is a refinement of a component Kh, denoted by

Kh � Kl if Kh.pIF = Kl.pIF and

1) Kl is not more likely to block clients,

f ailure(Kl) ⊆ f ailure(Kh),

2) Kl is not more likely to diverge,

divergence(Kl) ⊆ divergence(Kh).

We define the provided traces of a component K

trace(K) = {tr | (tr, {}) ∈ f ailure(K)}.
Notice that because of nondeterminism caused by inter-

nal actions and non-deterministic functionality of actions,

some of the traces are non-deterministic that the client can

still get blocked event it interacts with K following such a

trace. Therefore trace(K) cannot be used as the provided pro-

tocol for the client to use. We call a trace tr = a1 . . . an

non-blocking or input deterministic if for any of its prefix

tr′ = a1 . . . ak, there exists no set X of provided events of

K such that ak+1 ∈ X and (tr′, X) ∈ f ailure(K).

Definition 9 (Provided protocol of components) The

provided protocol of a component K, denoted as protocol(K)

is the set of all its non-blocking traces.

Obviously, if Kh � Kl, then protocol(Kh) ⊆ protocol(Kl).

There is a special class of components, such as the one in

Example 3, that have no internal actions, i.e., K.iA is empty.

They are called primitive component models. In our earlier

work [16], we proved that in general every closed component

model is equivalent to a primitive component model. This is

easy to see if the flow of control of the component forms a

finite state machine as the finite number of internal actions

from a state can be collapsed into their proceeding transi-

tions of provided actions. This result implies that we have

two forms of interface behavior model of a component.

Definition 10 (Contract) A component contract is just like

a primitive component C, but the body of each method m ∈
C.pIF is a guarded design gm & (pm � Rm).

So each closed component K is semantically equivalent to

a contract. Contracts are thus an important notion for the re-

quirement specification and verification of the correct design

32 Front. Comput. Sci., 2012, 6(1): 17–39

and implementation through refinements. They can be eas-

ily modeled by a state machine that is the vehicle of model

checking.

From the behavioral semantics of a contract C defined by

Definition 7, we obtain the following model interface behav-

ior.

Definition 11 (Publication) A component publication B =

(F, init, pIF, pProt), where the body of each method m in pIF

is just a design pm � Rm of the data functionality and pProt

is a set of traces that defines the provided protocol of B.

The protocol can be specified in a formal notation. This in-

cludes formal languages, such as regular expressions or a re-

stricted version of process algebra such as CSP without hid-

ing and internal choice. Publications are declarative, while

contracts are operational. Thus, publications are suitable for

specification of components in system synthesis.

Theorem 6 (Component refinement) Let

Kh = (inith, pIFh, iIFh) and Kl = (initl, pIFl, iIFl)

be two primitive components. Kh � Kl iff pIFh = pIFl and

for all m ∈ pIFh,

guardh(m) = guardl(m) ∧ bodyh(m) � bodyl(m).

4.3 Open components and component composition

We can put two closed components K1 and K2 in parallel,

denoted by K1 ‖ K2, so that a client can use the provided ser-

vices of the two components in an interleaving manner. We

can also construct components that provide new services us-

ing the services provided by a component. Such a new com-

ponent K provides services through its provided interface

K.pIF, but to deliver a service m() ∈ K.pIF, it can request

services from other components. Similarly, an internal action

in K.iA and a private method in K.iIF may also request ser-

vices. The requests to these services are made through the

required interface K.rIF. Obviously, it is required that K.rIF

is disjoint with K.pIF and K.iIF. A component with a non-

empty required interface is called an open component.

Definition 12 (Component composition) Let K1 and K2

be two components such that

K1.F ∩ K2.F=∅, K1.pIF ∩ K2.pIF=∅,K1.iA ∩ K2.iA=∅,
(K1.rIF ∪ K2.rIF) ∩ (K1.iIF ∪ K2.iIF) = ∅.

The parallel composition K1 ‖ K2 defines the component

K such that

K.F = K1.F ∪ K2.F,

K.iA = K1.iA ∪ K2.iA,

K.iIF = K1.iIF ∪ K2.iIF ∪
(K1.pIF ∪ K2.pIF) ∩ (K1.rIF ∪ K2.rIF),

K.pIF = (K1.pIF ∪ K2.pIF) − (K1.rIF ∪ K2.rIF),

K.rIF = (K1.rIF ∪ K2.rIF) − (K1.pIF ∪ K2.pIF).

Notice that any provided methods that are “plugged into”

required methods are not provided to the environment any-

more. When K1.rIF ⊆ K2.pIF and K2.rIF ∩K1.pIF = ∅, we

use K1 � K2, called K2 plugged into K1, to denote K1 ‖ K2.

When K1 and K2 have all their interfaces disjoint from each

other, we use K1⊕K2 to denote K1 ‖ K2, called disjoint union.

Then the semantics of an open component K is defined by

a functional �K� : C −→ C , where C is the set of closed

components. So given a closed component K1, �K� (K1) is

defined if K1.pIF = K.rIF and it is the closed component

K � K1. For two open components Kh and Kl, Kh � Kl if for

all K such that Kh � K � Kl � K. Notice that if Kh � Kl,

then K � Kh � K � Kl. A component composition in the

graphical and textual representation can be seen in Fig. 2. The

semantics of an open component will be shown in Example 4.

Definition 13 (Composability) Two open components K1

and K2 are composable if there exists a closed component K

such that K.pIF = ((K1 ‖ K2).rIF and the provided protocol

of (K1 ‖ K2) � K contains non-empty trace.

Composability is essential for decompositional design and

component synthesis.

Definition 14 (Decompositional design) Let C and K be a

contract and an open component, respectively. C is imple-

mentable by K if there is a component K1 such that C � (K �
K1).

The definition can also be defined for a publication, and in

that case K1 provides all the methods required by K and the

provided protocol of K1 must be a superset of the required

protocol of K, denoted by K.rProt(B.pProt), with respect

to the protocol specified in B, denoted by B.pProt. That is,

K.rProt(B.pProt) is the set of the sequences of invocations

to K1 made by K to deliver the protocol B.pProt.

Notice that interface adaption operations can be imple-

mented by simple open components, that are classified as

connectors:

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 33

1) Renaming the interface methods mi() in K.pIF to

mr
i () can be realized by Kr � K, denoted by

K[mr
1/m1 . . .mr

n/mn] where for each mi() in K.pIF,

mr
i (){mi()} is provided in Kr.pIF. Thus Kr.rIF =

K.pIF.
2) Using “dummy” required methods, access to some pro-

vided methods of K can be restricted (or hidden) from

the client. To do this, first rename K to Kr by re-

naming each provided m of K to mr. Then we de-

sign Kh such that Kh.pIF = K.pIF − M, and for

each m() ∈ Kh.pIF m(){mr()}, Kh.rIF = Kr.pIF, and

Kh.iIF = K.iIF ∪ M. Then K\M = Kh � Kr is the

component with methods in M hidden from the client.
3) Using connectors, the provided protocol of K can be

further constrained. We first rename K to Kr, and then

design an open component Kc such that Kc.pIF =

K.pIF, Kc.rIF = Kr.pIF, m(){mr()}, and use local vari-

ables and guards of methods to ensure that protocol(Kc)

is the wanted subset of protocol(K).

4.4 Processes

A component defined so far is rather passive in terms of its

external behavior, waiting for the client to invoke its provided

services. Now we define another class of components that are

used to actively coordinate and pass data around service com-

ponents. We call these components processes.

Definition 15 (Processes) A process is a quadruple P =

(F, init, rIF, A), where

1) F is a set of typed variables, called the fields of P and

denoted by P.F,
2) init is the initial condition of the variables, denoted by

P.init,
3) rIF is a set of guarded method invocations of the form

g & m(e; y), called the required interface of P and de-

noted by P.rIF, and
4) A is a set of actions, denoted by P.iA, written in the pro-

gramming language defined by Syntax (4) (no method

invocations allowed).

We also use P.rIF to denote the set of method signa-

tures in the guarded method invocations. The semantics of

a process is also defined in the same as for a closed com-

ponent in Definition 7. The observable events are the events

in P.rIF. We also define the set of traces of P in the same

traces(P) = {tr | (tr, <>) ∈ f ailure(P)}. The interaction pro-

tocol of P is defined as traces(P). Refinement between pro-

cesses is also defined in the same way as refinement between

closed components.

Processes do not interact with each other and the parallel

composition P1 ||| P2 of P1 and P2 is the interleaving of the

behaviors of P1 and P2. Formally, let P = P1 ||| P2, where

P1.F ∩ P2.F = ∅, P1.rIF ∩ P2.rIF = ∅ and P1.iA ∩ P2.iA =

∅. Then P.F = P1.F ∪ P2.F, P.rIF = P1.rIF ∪ P2.rIF and

P.iA = P1.iA ∪ P2.iA.

Definition 16 (Process coordination of components) Let

K1 be a closed component and P a process such that

K1.F ∩ P.F = ∅, K1.iA ∩ P.iA = ∅ and P.rIF ⊂ K1.pIF. The

coordination of K1 by P is the closed component K = K1 � P

such that

1) K.F = K1.F ∪ P.F and K.init = K1.init ∧ P.init,
2) K.pIF = K1.pIF − P.rIF,
3) K.iA={guardK1

(m) ∧ guardP(m) & body(m) | m∈P.rIF}
∪ K1.iA,

where guardK1
(m) and guardP(m) are the guards of m

in K1 and P, respectively, and body(m) is the body of m

defined in K1.

Similar to the compositions of components, we define that

a process P and a closed component K are composable if

protocol(K � P) contains non-empty traces.

Example 4 We now show how an open component and a

process can be used to glue two components using an exam-

ple of buffers.

component Buffer { // one place buffer
seq(int) b = empty;
provided interface {

put(int x) { b = empty & b:=<x> }
get(; int y) { b�empty & y:=head(b); b:=<> }

}
}

component Connector {
int z;
provided interface { shift() { get1(; z); put(z) } }
required interface { get1(; int z); put(int z) }

}
process P {

required interface { shift() }
}

Let Bu f f 1 = Bu f f er[get1/get], Bu f f 2 =

Bu f f er[put2/put], BB = Connector � (bu f f 1 ⊕ bu f f 2).

Then B2B = BB � P is a two-place buffer. However if we

define a process as follows:

process P1 {

34 Front. Comput. Sci., 2012, 6(1): 17–39

int x, bool c = true
required interface { c & get1(; x); �c & put(x) }
internal interface { c & c:=false; �c & c:=true }

}

BB � P1 is a three-place buffer, as P1 is also a place holder.

It is easy to see when a number of components are coor-

dinated by a process, the components are not aware of which

other components they are working with or exchange data

with. Another important aspect of the modeling methods is

the separation of local data functionality of a component from

the control of its interaction protocols. We can design com-

ponents in which the provided methods are not guarded and

thus have no access control. Then, using connectors and co-

ordinating processes the desired interface protocols can be

designed. In term of practicability, most connectors and co-

ordinating processes in applications are dataless, thus having

a purely event-based interface behavior. This allows rCOS to

enable the separation of design concerns of data functionality

from interaction protocols.

5 Integrating theories, techniques, and tools
into the development process

The rCOS theory of semantics and refinement is to underpin

the techniques for model construction, transformation, anal-

ysis, and verification. The formal theory is not to be directly

accessed by practical software engineers. The formal tech-

niques, such as those for writing formal specifications, carry-

ing verifications, and changing models following refinement

laws, are usually hard for practitioners to directly apply in

software projects. Therefore, it is essential for the techniques

to have automated tool support so that they can be used cor-

rectly and effectively. The effort in the rCOS tool develop-

ment aims at supporting the formal techniques in building,

analyzing, and verification of models in a model-driven de-

velopment process.

5.1 UML profile of rCOS

The first effort in the rCOS tool development is to ease

the difficulty of users in creating formal models. To this

end, we have defined and implemented a UML profile for

rCOS [40,41]. The profile defines:

1) An rCOS class declaration section ClassDecls as a

UML class diagram, e.g., Fig. 6, in which attributes and

method signatures of classes are defined,

2) The object interactions in methods of classes as object

sequence diagrams,

3) Component specifications and compositions, e.g.,

Fig. 3 and Example 1, as a UML component diagram,

e.g., Fig. 2 and Fig. 4, in which fields and interface

methods are defined,

4) The interaction among components and the interaction

of a component with the environment as component se-

quence diagrams, in which interface protocols are de-

fined,

5) The reactive behavior of components, as UML state di-

agrams, that are used for analysis and verification.

The functionality of a class method or a component pro-

vided method that changes local data of the class or the com-

ponent is specified by a pair of pre- and post-conditions or

program statements that do not involve invocation to meth-

ods of another class or component.
The above graphical models can be constructed using the

rCOS plug-ins to Eclipse, and be automatically translated

and integrated as an rCOS model of an OO architecture or

a component-based architecture. The tool supports the con-

struction of rCOS models with the formal rCOS notation,

and the rCOS notation defines the precise semantics of the

graphical models. Later in this section, we will see that

more complicated diagrams, such as component sequence di-

agrams, component diagrams, and interface protocol spec-

ifications are automatically generated without the need to

be constructed by the designer. The tool supports the con-

sistency checking among the class diagrams, sequence dia-

grams, state diagrams, and the textual specification of local

functionalities. This involves the translation of component

sequence diagrams and component interface state diagrams

to CSP process expressions [27,28] and invoking the FDR2

model checker for CSP.

5.2 Top-down development

We discuss the use of the rCOS method and tool support by

tailoring the traditional Waterfall model of software devel-

opment process and discuss what and how rCOS models are

generated and analyzed at each stage of the process. For a de-

tailed case study we refer to our earlier publication in [14,42].
• Initial Requirements Model The rCOS methodol-

ogy considers the development of component-based reactive

software systems from use cases. The requirements elucida-

tion and analysis are based on understanding the applica-

tion domain through the identification, discussion, and de-

scription of use cases. The target artifact of the requirements

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 35

elucidation and analysis is a model of the requirements, that

is, the model of the software architecture at the level of re-

quirements. We only focus on functional requirements and

leave the non-functional requirements (or extra-functional re-

quirements) out of this paper.

Use cases represent specific workflows within the software

application. For example, in a classical library reservation

system [43], borrowing or returning a book, including the

necessary data entry, are modeled as separate use cases. In

the CoCoME case study for a supermarket cash desk system,

where we previously applied our methodology by hand [42],

buying items, paying for the purchase, and reporting are sep-

arate use cases. The specification of a use case describes the

flow of interactions with the environment that consists of a

set of actors, with the system in the execution of a business

process. In other words, it is about the flow of actions of the

actors using the system in carrying out a business process. We

represent each interaction of an actor with the system as an

invocation (a request) to a method (a service) provided by the

system. Such an invocation may often pass data into the sys-

tem and receive return values from the system. The execution

of a method by the system will change the state of the sys-

tem, i.e., the values of the variables or the state of the objects

stored in the system. Therefore, a use case identifies a set

of methods that the system provides to the actors and these

methods are related by the business process.

Thus, a use case is modeled as an rCOS component that has

a provided interface of the methods required by the business

process, the interaction protocol defines the flow of the in-

teractions (i.e., the acceptable orders of the interactions), and

the data and objects for the definition of the parameters of

the method invocations and the state of the component. The

model of such a component consists of models of the struc-

ture views: including a class diagram defining the classes

and data types of variables and parameters of the component

and a component diagram (that contains one component only)

defining the provided interface of the component. It also con-

tains models of dynamic views that are the interaction pro-

tocol as a component sequence diagram describing the flow

of the interactions between the actors and the component (as

part of the system), and a state diagram model of the reactive

behavior. The other view is the data functionality of the exe-

cution of the interface methods, that are specified as UTP de-

signs (i.e., pre- and post-conditions). Such a use case is rather

primitive and they do not use or contain other use cases.

However, more complicated use cases are related and a

use case can use, contain, or extend some other use cases,

as described by a UML diagram. Requirement analysis in-

cludes the identification of these relations and decomposition

of a use case as compositions of use cases. These composi-

tions can be modeled by the rCOS component-based architec-

ture operators. Thus, at the end of the requirement analysis,

a model of component-based architecture is constructed, in-

cluding the following models defined in the UML profile (see

Fig. 9):

Fig. 9 Overview of UML artifacts

1) A component diagram in which each component repre-

sents a use case,
2) A class diagram or a number of class diagrams (pack-

ages) defining the classes and types of data and objects

of the components,
3) A set of component-sequence diagrams represents the

interactions of the components and their interactions

with the actors,
4) A set of state diagrams, one for each component,
5) Local data functionality of provided methods of the

components.

These models form a consistent whole model of the re-

quirements represented in rCOS in the format shown in

Fig. 3. The consistency should be checked by the rCOS tool,

and the correctness should be verified to avoid deadlock dur-

ing interactions among components by FDR model checking

on the CSP processes generated from the sequence diagrams,

and on the safety properties of state diagrams.
• Design through refinement and model transforma-

tions The methods of components in the requirements model

are in general not executable, as they are specified as pre-

and post-conditions in relational predicates. The design is to

produce from these specifications an executable code in a

modern object-oriented programming language like Java or

C++. Our interest is not in generating such an executable

code, but in producing specifications of the methods of the

36 Front. Comput. Sci., 2012, 6(1): 17–39

components in the syntax defined in Section 3, called the de-

tailed designed model. Obviously the detailed design model

is very close to an executable implementation, but it has to be

produced from the model of requirements, using the rCOS re-

finement and model transformations. The rCOS methodology

proposes the following two major design steps.

1) OO design of provided methods. Consider each com-

ponent K in the requirements model and each of its provided

method m(){S pec}. S pec is a UTP design specification p � R

if K is a primitive component, otherwise it is a specifica-

tion formed from UTP design specifications and invocations

to methods of other components using command construc-

tors. The OO design of method m() refines each UTP de-

sign specification by decomposition and assignments of re-

sponsibilities of the specification to objects, called expert ob-

jects. This is done by following the design patterns for re-

sponsibility assignments [14,34], the Expert Pattern in par-

ticular. These patterns are formalized as refinement laws in

rCOS [14,15]. The responsibilities assigned to objects are de-

fined as methods of the classes of the objects, and the UTP

design specification is then refined as method invocations to

these methods of the expert objects.

Using the rCOS tool to work on the refinement of each

interface method m() of the component with the sequence di-

agram of the component actually transforms the component

sequence diagram to an object sequence diagram in which

the UTP design specifications are refinement into method in-

vocations among the expert objects. The tool also automati-

cally refines the class diagram (called a conceptual class di-

agram) of the requirements model by adding the methods of

the expert objects to their classes, and thus the conceptual

class diagram is transformed to a design class diagram. The

component diagrams and the state diagrams of the compo-

nents in the requirements model are not changed by the OO

refinement.

2) Generating a component-based design architecture

model. This step considers the object sequence diagrams of

each component constructed in the above step in turns. The

designer uses the rCOS tool [41] to select a number of ob-

jects lifelines in the object sequence diagram to change them

into “components”. Not an arbitrary selection of objects can

be changed to components and the validity conditions are de-

fined and can be automatically checked. If the validity check-

ing passes, the tool automatically transforms the object se-

quence diagrams into a component sequence diagram, with

the “unselected objects automatically falling into the appro-

priate selected component candidates as their fields”.

These transformations of object sequence diagrams of

components of the requirements model decompose the com-

ponents into compositions of sub-components. A component

diagram is automatically generated, which refines the compo-

nent diagram of the requirements model. The protocols of the

new components and their state diagrams of the new compo-

nents are also automatically generated. This way, a model of

component-based design architecture is generated, consisting

of the design component diagram, the refined component se-

quence diagrams, the state diagrams of the components, and

the design class diagram(s).

• Code generation After finally all non-executable con-

structs in the model have been refined (the tool indicates

whether there is still work to be done), the model can then be

used for code generation. We have established the principal

mapping from rCOS to the Java programming language, and

with the help of a few annotations (mostly on the libraries

supplied by the tool), we can generate the code automati-

cally. The code generator can easily be adapted to generate

code for other object-oriented languages. Currently, the tool

can only generate monolithic, non-distributed programs, and

does not consider component deployment.

• Validation and verification Apart from the static check-

ing of the model on the UML level (completeness and consis-

tency, mostly given in the Object Constraint Language OCL

[44,45]), and type checking of designs, rCOS provides fur-

ther validation and verification techniques to ensure the cor-

rectness of the models generated in each development phase.

First, the requirements model can be validated using the

automated prototyping tool, AutoPA [43]. This tool automat-

ically generates executable code of the use case components

directly from the requirements. For verification of deadlock

freedom of component interactions, the component sequence

diagrams are transformed to the input notation of the CSP

as the input for FDR model checker [46] for verification of

deadlock freedom. Application dependent safety and liveness

properties are verified by model checking the state diagrams

of the components. The correctness of the functionality of

methods are mainly ensured by the application of refinement

laws and correctness preserving model transformations, such

as those from object sequence diagrams to component se-

quence diagrams. The designers can also define their own ad

hoc model transformation or model refactoring. Then the cor-

rectness of these transformations can be proved with the aid

of the theorem proving tool presented in [47]. For prelimi-

nary tool support to rCOS component-based testing, we refer

to the work in [48].

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 37

6 Conclusions

In this paper, it is the first time that we have given a compre-

hensive introduction to the rCOS method for formal model-

driven software development. This includes the ideas behind

the development of the method. A major research objective

of the rCOS method is to improve the scalability of semantic

correctness preserving refinement between models in model-

driven software engineering. The rCOS method promotes

the idea that component-based software design is driven by

model transformations in the front end and verification and

analysis techniques are integrated through model transforma-

tions. It effectively attacks the challenges of consistent in-

tegration of models of different viewpoints of the software

system under development, such that different theories, tech-

niques and tools can be applied effectively to the correspond-

ing models. The final goal of the integration is to support the

separation of design concerns, those of the data functionality,

interaction protocols and class structures in particular. It pro-

vides a seamless combination of OO design and component-

based design. As the semantic foundation presented in Sec-

tion 3 and the models of components in Section 4 show, rCOS

allows the classical specification and verification techniques,

Hoare Logic and calculus of Predicate Transformers for data

functionality, process algebras, finite state automata, and tem-

poral logics for reactive behavior. Refinement calculi for data

functionality and reactive behavior are also integrated into the

methods. In particular, design patterns and refactoring tech-

niques in object-oriented design are formalized. Construc-

tion of models and model refinements are supported by the

rCOS tool. The method has been tested on enterprise sys-

tems [14,42], remote medical systems [49], and service ori-

ented systems [50].

Similar to JML [26], rCOS method intends to convey the

message that the design of a formal modeling notation can

and should take advantage of the advanced features of the

architectural constructs in modern programming languages

like Java. This will make it is easier to use and understand for

practical software engineers, who have difficulties to compre-

hend heavy mathematical constructs and operators.

This paper is a combination of the results published in

several papers. However, it is the first time that we present

the full semantic foundation of rCOS. Also, the models of

closed components semantics and the coordinating processes

are improved, mainly to ease the understanding and link to

existing theories, compared to the definitions we gave earlier,

including the internal autonomous actions. This has allowed

us to define the coordination of a component by a process

much more smoothly. The link of the rCOS models to clas-

sical semantic models is presented in this paper. We have

not spent space on related work as that has been discussed

in the papers that we have referred to in this paper. In future

work, we are interested in dealing with timing issues of com-

ponents as another dimension of modeling. Also, with the

separation of data functionality and flow of interaction con-

trol, we would like to investigate how the modeling method

is applied to workflow management, health care workflows

in particular [51].

Acknowledgements Many of our former and current colleagues have made
contributions to the development of the rCOS method and its tool sup-
port. Together with the second and third authors of this paper, He Jifeng
started the investigation of the semantic theory of rCOS and established the
first layer of the foundation for the rCOS method. Jing Liu and her group
have made significant contributions to the link of rCOS to UML and service
oriented architecture; Xin Chen, Zhenbang Chen, E-Y Kang, and Naijun
Zhan to the component-based modeling and refinement; Charles Morisset,
Xiaojian Liu, Shuling Wang, and Liang Zhao to the object-oriented seman-
tics, refinement calculus and verification; Anders P. Ravn to the design of the
tool and the CoCoME case study; Dan Li, Xiaoliang Wang, and Ling Yin to
the tool development, Bin Lei and Cristiano Bertolini to testing techniques;
and Ruzhen Dong and Martin Schäf to the automata-based model of interface
behavior. The rCOS methods have been taught in many UNU-IIST training
schools, inside and outside Macau and we are grateful to the very helpful
feedback and comments that we have received from the participants. The
research on rCOS has been supported in parts over the years by the projects
HighQSoftD, HTTS, ARV and GAVES funded by Macao Science and Tech-
nology Development Fund and the National Nature Science Foundation of
China (Grant Nos. 60970031, 61073022).

References

1. Dijkstra E W. The humble programmer. Communications of the ACM,

1972, 15(10): 859–866, ACM Turing Award lecture
2. Brooks Jr F P. No silver bullet: Essence and accidents of software en-

gineering. IEEE Computer, 1987, 20(4): 10–19
3. Booch G. Object-Oriented Analysis and Design with Applications.

Boston: Addison-Wesley, 1994
4. Brooks Jr F P. The mythical man-month: After 20 years. IEEE Soft-

ware, 1995, 12(5): 57–60
5. Holzmann G J. Conquering complexity. IEEE Computer, 2007, 40(12):

111–113
6. Wirsing M, Banâtre J P, Hölzl M, Rauschmayer A. Software-Intensive

Systems and New Computing Paradigms — Challenges and Vi-

sions. Lecture Notes in Computer Science, 2008, 5380
7. Peter L. The Peter Pyramid. New York: William Morrow, 1986
8. Leveson N G, Turner C S. An investigation of the Therac-25 acci-

dents. IEEE Computer, 1993, 26(7): 18–41
9. Robinson K. Ariane 5: Flight 501 failure — A case study. http://www.

cse.unsw.edu.au/∼se4921/PDF/ariane5-article.pdf, 2011
10. Johnson J. My Life Is Failure: 100 Things You Should Know to Be a

Better Project Leader. West Yarmouth: Standish Group International,

2006
11. Szyperski C. Component Software: Beyond Object-Oriented Program-

38 Front. Comput. Sci., 2012, 6(1): 17–39

ming. Boston: Addison-Wesley, 1997
12. Object Management Group. Model driven architecture — A technical

perspective. Document number ORMSC 2001-07-01, 2001
13. Liu Z, Kang E, Zhan N. Composition and refinement of components.

In: Butterfield A, eds. Post Event Proceedings of UTP08. Lecture

Notes in Computer Science, 2009, 5713
14. Chen Z, Liu Z, Ravn A P, Stolz V, Zhan N. Refinement and verifica-

tion in component-based model driven design. Science of Computer

Programming, 2009, 74(4): 168–196
15. Zhao L, Liu X, Liu Z, Qiu Z. Graph transformations for object-oriented

refinement. Formal Aspects of Computing, 2009, 21(1–2): 103–131
16. Chen X, He J, Liu Z, Zhan N. A model of component-based program-

ming. In: Arbab F, Sirjani M, eds. International Symposium on Funda-

mentals of Software Engineering, Lecture Notes in Computer Science,

2007, 4767: 191–206
17. Hoare C A R. An axiomatic basis for computer programming. Com-

munications of the ACM, 1969, 12(10): 576–580
18. Chen X, Liu Z, Mencl V. Separation of concerns and consistent inte-

gration in requirements modelling. In: Leeuwen J, Italiano G F, Hoek

W, Meinel C, Sack H, Plášil F, eds. Proceedings of 33rd Conference on

Current Trends in Theory and Practice of Computer Science. Lecture

Notes in Computer Science, 2007, 4362
19. Liu J, Liu Z, He J, Li X. Linking UML models of design and require-

ment. In: Proceedings of the 2004 Australian Software Engineering

Conference. Washington: IEEE Computer Society, 2004, 329–338
20. Li X, Liu Z, He J. Consistency checking of UML requirements. In:

Proceedings of 10th International Conference on Engineering of Com-

plex Computer Systems. Washington: IEEE Computer Society, 2005,

411–420
21. He J, Li X, Liu Z. A theory of reactive components. Electronic Notes

in Theoretical Computer Science, 2006, 160: 173–195
22. He J, Liu Z, Li X. rCOS: A refinement calculus of object systems. The-

oretical Computer Science, 2006, 365(1–2): 109–142
23. Ke W, Liu Z, Wang S, Zhao L. A graph-based operational semantics

of OO programs. In: Proceedings of 11th International Conference

on Formal Engineering Methods. Lecture Notes in Computer Science,

2009, 5885: 347–366
24. Spivey J M. The Z Notation: A Reference Manual. 2nd ed. Upper Sad-

dle River: Prentice Hall, 1992
25. Jones C B. Systematic Software Development Using VDM. Upper Sad-

dle River: Prentice Hall, 1990
26. Leavens G T. JML’s rich, inherited specifications for behavioral sub-

types. In: Liu Z, He J, eds. Proceedings of 8th International Conference

on Formal Engineering Methods. Lecture Notes in Computer Science,

2006, 4260: 2–34
27. Hoare C A R. Communicating Sequential Processes. Upper Saddle

River: Prentice-Hall, 1985
28. Roscoe A W. Theory and Practice of Concurrency. Upper Saddle River:

Prentice-Hall, 1997
29. Alfaro Ld, Henzinger T A. Interface automata. SIGSOFT Software En-

gineering Notes, 2001, 26(5): 109–120
30. Liu Z, Joseph M. Specification and verification of fault tolerance, tim-

ing, and scheduling. ACM Transactions on Programming Languages

and Systems, 1999, 21(1): 46–89
31. Hoare C A R, He J. Unifying Theories of Programming. Upper Saddle

River: Prentice-Hall, 1998

32. Dijkstra E W, Scholten C S. Predicate Calculus and Program Seman-

tics. New York: Springer-Verlag, 1990

33. Fowler M. Refactoring — Improving the Design of Existing Code.

Menlo Park: Addison-Wesley, 1999

34. Larman C. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process. 3rd ed. Upper

Saddle River: Prentice-Hall, 2005

35. Chandy K M, Misra J. Parallel Program Design: A Foundation. Read-

ing: Addison-Wesley, 1988

36. Back R J R, von Wright J. Trace refinement of action systems. In: Pro-

ceedings of 5th International Conference on Concurrency Theory. Lec-

ture Notes in Computer Science, 1994, 836: 367–384

37. Lamport L. The temporal logic of actions. ACM Transactions on Pro-

gramming Languages and Systems, 1994, 16(3): 872–923

38. Milner R. Communication and Concurrency. Upper Saddle River:

Prentice-Hall, 1989

39. Lynch N A, Tuttle M R. An introduction to input/output automata.

CWI Quarterly, 1989, 2(3): 219–246

40. Chen Z, Liu Z, Stolz V. The rCOS tool. In: Fitzgerald J, Larsen P

G, Sahara S, eds. Modelling and Analysis in VDM: Proceedings of

the Fourth VDM/OvertureWorkshop, number CSTR-1099 in Technical

Report Series. Newcastle: University of Newcastle Upon Tyne, 2008,

15–24

41. Li D, Li X, Liu Z, Stolz V. Interactive transformations from object-

oriented models to component-based models. Technical Report 451,

IIST, United Nations University, Macao, 2011

42. Chen Z, Hannousse A H, Hung D V, Knoll I, Li X, Liu Y, Liu Z, Nan

Q, Okika J C, Ravn A P, Stolz V, Yang L, Zhan N. Modelling with re-

lational calculus of object and component systems–rCOS. In: Rausch

A, Reussner R, Mirandola R, Plasil F, eds. The Common Component

Modeling Example. Lecture Notes in Computer Science, 2008, 5153

(Chapter 3): 116–145

43. Li X, Liu Z, Schäf M, Yin L. AutoPA: Automatic prototyping from

requirements. In: Margaria T, Steffen B, eds. Proceedings of 4th In-

ternational Conference on Leveraging Applications of Formal Meth-

ods. Lecture Notes in Computer Science, 2010, 6415: 609–624

44. Object Management Group. Object constraint language, version 2.0,

May 2006

45. Warmer J, Kleppe A. The Object Constraint Language: Precise Mod-

eling with UML. Boston: Addison-Wesley, 1999

46. Chen Z, Morisset C, Stolz V. Specification and validation of be-

havioural protocols in the rCOS modeler. In: Arbab F, Sirjani M,

eds. Proceedings of 3rd IPM International Conference on Fundamen-

tals of Software Engineering. Lecture Notes in Computer Science,

2009, 5961: 387–401

47. Liu Z, Morisset C, Wang S. A graph-based implementation for mech-

anized refinement calculus of oo programs. In: Davies J, Silva L, Silva

Simão Ad, eds. Proceedings of 13th Brazilian Symposium on Formal

Methods. Lecture Notes in Computer Science, 2010, 6527: 258–273

48. Lei B, Li X, Liu Z, Morisset C, Stolz V. Robustness testing for soft-

ware components. Science of Computer Programming, 2010, 75(10):

879–897

49. Xiong X, Liu J, Ding Z. Design and verification of a trustable medical

system. In: Johnsen E B, Stolz V, eds. Proceedings of 3rd International

Workshop on Harnessing Theories for Tool Support in Software. Elec-

Wei KE et al. rCOS: a formal model-driven engineering method for component-based software 39

tronic Notes in Theoretical Computer Science, 2010, 266: 77–92

50. Liu J, He J. Reactive component based service-oriented design–a case

study. In: Proceedings of 11th IEEE International Conference on Engi-

neering of Complex Computer Systems. Washington: IEEE Computer

Society, 2006, 27–36

51. Bertolini C, Liu Z, Schäf M, Stolz V. Towards a formal integrated

model of collaborative healthcare workflows. Technical Report 450,

IIST, United Nations University, Macao, 2011. In: Proceedings of 1st

International Symposium on Foundations of Health Information Engi-

neering and Systems (In press)

Wei Ke is a researcher and lecturer

of Macao Polytechnic Institute. He re-

ceived his MSc from Institute of Soft-

ware of the Chinese Academy of Sci-

ences. He is currently a PhD student of

School of Computer Science and En-

gineering, Beihang University. His re-

search interests include programming

languages, formal methods and tool support for object-oriented and

component-based engineering and systems. His recent research fo-

cus is model-driven architectures in health informatics.

Xiaoshan Li is an associate professor of

Department of Computer and Informa-

tion Science, University of Macau. He

received his PhD in 1994 from Institute

of Software of the Chinese Academy of

Sciences. His research interests include

formal specification and verification of

concurrent and real-time systems, and

sound methods for object-oriented and

component-based engineering and systems. His recent research fo-

cus is software engineering methods in health care.

Zhiming Liu is a Senior Research Fel-

low of UNU-IIST and the head of In-

formation Engineering and Technology

in Health Programme (IETH). Before

UNU-IIST, he was a University Lec-

turer at the University of Leicester and

a Research Fellow at the University

of Warwick. He holds a master degree

from the Institute of Software of the Chinese Academy of Sciences,

and a PhD from the University of Warwick. His research interest is

in formal theories and techniques of software engineering. He is in-

ternationally known for his work on the Transformational Approach

to Fault-Tolerance and Real-Time computing, and the rCOS Method

of Model-Driven Design of Component Software. The research of

IETH extends and applies these methods to human and environmen-

tal health care.

Volker Stolz is a post-doc in the Precise

Modelling and Analysis group in the

Department of Informatics at the Uni-

versity of Oslo, Norway, and Adjunct

Research Fellow at UNU-IIST, where

he is Principal Investigator of the “Ap-

plied Runtime Verification” project. He

holds a master and PhD degree in Com-

puter Science from RWTH Aachen,

Germany. His current interest is integration of formal methods into

main-stream software engineering approaches and tools.

