
Laws of Object-Orientation with Reference
Semantics

Leila Silva1, Augusto Sampaio2, and Zhiming Liu3?

1 Computer Science Department
Federal University of Sergipe - UFS

CEP 49000-100 São Cristóvão - SE - Brazil
leila@ufs.br

2 Center of Informatics
Federal University of Pernambuco - UFPE

CEP 50740-540 Cidade Universitária - Recife - PE - Brazil
acas@cin.ufpe.br

3 International Institute for Software Technology
P.O.Box 3058, Macao SAR - China

Z.Liu@iist.unu.edu

Abstract. Algebraic laws have been proposed to support program trans-
formation in several paradigms. In general, and for object-orientation in
particular, these laws tend to ignore possible aliasing resulting from ref-
erence semantics. This paper proposes a set of algebraic laws for object-
oriented languages in the context of a reference semantics. Soundness of
the laws is addressed, and a case study is also developed to show the
application of the proposed laws for code refactoring.

1 Introduction

Object-oriented programming is largely used for potentially increasing the pro-
ductivity of software development and there is a great interest on formalisms
that allow reasoning about object-oriented programs.

Several approaches to formalise the semantics of object-oriented languages
have been proposed. For example, Abadi and Leino [1] introduce a logic similar
to Hoare Logic [2] for reasoning about object-oriented programming and prove
its soundness. Müller and Poetzsch-Heffer [3] introduce some general techniques
for object-oriented program verification. Cavalcanti and Naumann [4] propose
an object-oriented language, ROOL, which is a subset of sequential Java com-
bined with some refinement constructs such as specification statements as in [5].
The semantics of ROOL is based on weakest preconditions and adopts the copy
mechanism. He et al [6] propose rCOS, a reference semantics for an object-
oriented language, based on the Unifying Theories of Programming (UTP) [7],

? We thank Márcio Cornélio for profitable discussions about this work. The authors
thank CNPq, the Brazilian research agency, for financial support. Leila Silva thanks
UNU-IIST for financial support for her visit to this institute.

which considers the reference mechanism. The logic of rCOS is a conservative
extension of standard predicate logic [7]. Santos et al [8] also define a semantics
for an object-oriented language, based on the UTP; this work addresses a copy
semantics and considers pointers as a separate and complementary theory [9].

Many paradigms have benefited from algebraic programming laws, among
them imperative programming [10], functional programming [11], logic program-
ming [12] and concurrency [13]. These laws state properties that relate pro-
gramming constructs. Nevertheless, programming laws for the object-oriented
paradigm are not yet well established. Laws for small grain object-oriented con-
structs have been considered in [14, 15]. The work of Borba et al [16] is a sig-
nificant contribution in this direction. They propose laws of commands and of
classes for ROOL, therefore restricted to copy semantics. Cornélio [17] proves
all the laws proposed in [16] and shows how these laws can be used to formalize
some of the refactorings informally proposed by Fowler [18]. He et al [6] also
propose a set of laws for an object-oriented language, in the context of rCOS.
These laws are very similar to the ones presented in [16] and the proofs in the
context of a reference semantics are omitted. Furthermore, laws valid exclusively
in the context of reference semantics have not been investigated.

In this paper we present laws for object-oriented languages considering a
reference semantics. We consider laws that are valid both for copy and refer-
ence semantics, revise some laws that are valid for copy but not for reference
semantics, and propose new laws that hold only for reference semantics. As far
as we are aware, this is an entirely new contribution. In particular, we use the
rCOS semantics to prove soundness of each proposed law, as illustrated in this
paper and more detailed in [19]. We also develop a simple case study to show
the applicability of the proposed laws for improving code structure.

This paper is organized as follows. Section 2 summarises the rCOS semantics.
Section 3 briefly discusses copy versus reference semantics and introduces some
laws valid exclusively in the context of reference semantics. Applications of the
proposed laws related to code refactoring are the subject of Sect. 4. Section 5
presents some final considerations and directions for future work. Finally, in
Appendix A we illustrate the style for proving the proposed laws.

2 The rCOS Approach

To prove the soundness of the laws introduced in this paper, we need to use
a semantics for object-oriented languages that considers references. We adopt
rCOS [6], which is based on the Unifying Theories of Programming (UTP) [7].
This section summarizes some relevant aspects of rCOS.

2.1 Syntax of rCOS

In rCOS an object system (or program) S is of the form Cdecls • Main, where
Cdecls consists of a class declaration section and Main a main method. The
main method is a pair (externalvar, c), where externalvar is a finite set of

global variables and c is a command (the program control flow). The declaration
section is a finite set of class declarations cdecl1;cdecl2; ... ;cdeclk, where
each class declaration cdecli has the form given in what follows.

[private] class M [extends N] {
[private T11 a11 = d11, ..., T1r a1r = d1r;]
[protected T21 a21 = d21, ..., T2s a2s = d2s;]
[public T31 a31 = d31, ..., T3t a3t = d3t;]
[method m1(V11 x1; V12 y1; V13 z1){c1};...

m`(V`1 x`; V`2 y`; V`3 z`){c`};]}

The square brackets mean that the enclosed term is optional. A class can be
declared private or public, but only public classes or a primitive type can be
used as global variable types in Main. Attributes can be private, protected
or public and a method declaration declares its value parameters (Vi1 xi),
result parameters (Vi2 yi), value-result parameters (Vi3 zi) and body (ci).
All methods are public. rCOS supports the following commands:

c ::= SKIP | CHAOS | var T x [=e] | end x | c1;c2| c1 / b . c2 |
c1 u c2 | b ∗ c | le.m(e1;e2;e3) | le := e | C.new(le)

The command SKIP does nothing and terminates successfully, whereas CHAOS
is the most nondeterministic process. Variables can be declared with var and
undeclared with end. Variables may include an optional initialization. Sequential
composition (;), conditional choice (/ .), non determinism (u) and iteration
(*) are provided. The arguments of a method call le.m obey value, result and
value-result parameter passing mechanisms, respectively. The term le stands
for an expression that can appear on the left-hand side of an assignment. Such
expressions are called left-expressions and obey the form le ::= x | self |
le.a | (C) le, where x is a variable and a an attribute. An expression e is of
the form e ::= x | a | null | self | e.a | (C)e | f(e), where null is
a null reference, self is used to denote the active object, e.a is the attribute a
of e, (C)e is type casting and f is a built-in operation for a primitive type. The
term e1 is a list of expressions, whereas e2 and e3 are lists of left-expressions.

2.2 Semantics of rCOS

In rCOS, the semantics of a program is the combination of its static and dynamic
semantics. The static semantics comprises a class declaration and a declaration
section. The dynamic semantics addresses a command and the entire program.
For conciseness, we detail only the dynamic semantics of some constructs, enough
for understanding the proof show in Appendix A; see [6] for further details.

The static semantics is captured by the structural variables, denoted by Ω,
which do not change during the execution of the program. These variables record,
for example, the set of names, denoted as cname, of the private and public
classes, the set of private, protected and public attributes of a given class, the

direct superclass of a class and a mapping op(C) that associates to each class C
the list of methods of C.

The dynamic semantics use dynamic variables, which comprise program vari-
ables, a variable visibleattr (that records the visible attributes) and a variable π
that represents the system configuration.

Program variables include global (denoted externalvar) variables, which are
the variables declared in the main method, and local variables (denoted localvar),
declared by local variable declaration commands. Local variables include self
(whose value represents the current active object) and parameters of methods.
The union of global and local variables is denoted by Var.

As method calls may be nested, self and parameters may be declared a num-
ber of times with possible different types before they are undeclared. Thus, a
local variable x is represented by a sequence of declared types

x : TypeSeq ,TypeSeq ::= 〈T1, T2, . . . , Tn〉.
The declared type of x is retrieved by the function dtype(x). The term x is used
to denote the value of a local variable x, which is in fact a sequence of values,
the head representing the current value of x, denoted by value(x).

A value is either a member of a primitive type or is an object identity in
REF with its dynamic typing information. REF is a set of object identities (or
references) and includes null . For a value v = 〈r, C〉, ref(v) denotes the reference
r of v and type(v) the current type C of v.

An object o is either the special object null or a structure 〈r, C, σ〉, where σ
is the state of o, denoted state(o), mapping each attribute a visible in C into a
value of the declared type of a.

The visibility of attributes is captured by a dynamic variable visibleattr that
records the set of attributes visible to the command under execution. The value
of visibleattr defines the current execution environment.

The value of the system configuration π is the set of objects created so far.
When a new object is created or the value of an attribute of an existing object
is modified, the system configuration changes. We use π(C) to denote the set of
existing objects of class C.

In the UTP a program is represented by a design D = (α, P) where α denotes
the set of variables of the program and P is a predicate of the form

p(x) ` R(x, x′)
def
= (ok ∧ p(x)) ⇒ (ok′ ∧R(x, x′))

where x, x′ ⊆ α stand for the initial and final values of a variable; p is the
precondition, defining the initial states; R is the postcondition, relating the initial
and final states; ok, ok′ describe initiation and termination of the program and
do not appear in expressions or assignments of the program texts. Designs can be
framed and the domain of designs is closed under sequential composition, choice
and iteration. Refinement relation between design is defined as logic implication.

As rCOS is based on the UTP, the semantics of a command is defined using
the dynamic variables. Each command c has its well-defined conditions D(c), as
part of the precondition of the semantics of c; the semantics of c, denoted [[c]],

has the form of D(c) ⇒ (p ` R). In what follows we give the semantics of local
declaration and undeclaration, assignments and method call. The semantics of
other constructors can be found in [6].

Local variable declaration and undeclaration. Local variables are represented as
sequences of declared types and values. When a variable is declared the cor-
responding sequences are modified to add a new elements in their heads. The
command var T x = e declares a variable and initializes it. The semantics is
given below, where the symbol ¹ stands for a subclass relation.

D(var T x = e)
def
= (x ∈ localvar) ∧ D(e) ∧

type(e) ∈ cname ⇒ type(e) ¹ T

[[var T x = e]]
def
= {x} : D(var T = e) ` (x′ = 〈value(e)〉.x) ∧

TypeSeq ′(x) = 〈T 〉.TypeSeq(x).

The command end x terminates the current scope of variable x. Thus, the heads
of the sequences of x are removed.

D(end x)
def
= (x ∈ localvar)

[[end x]]
def
= {x} : D(end x) ` (x′ = tail(x)) ∧

TypeSeq ′(x) = tail(TypeSeq(x)).

Assignments. An assignment has two forms, depending on whether le is a vari-
able x or has the form le.a. In the first case, the current value of the variable is
changed. In the second case, the value of an attribute a of object le is modified.

D(le := e)
def
= D(le) ∧ D(e) ∧ type(e) ∈ cname ⇒ type(e) ¹ dtype(le)

[[x := e]]
def
= {x} : D(x := e) ` (x′ = 〈value(e)〉.tail(x))

[[le.a := e]]
def
= {π(dtype(le))} : D(le.a := e) `

(π(dtype(le))′ = π(dtype(le))]
{o⊕ {a 7→ value(e)|o ∈ π ∧ ref(o) = ref(le)}}).

The overriding (⊕) of an object o = 〈r,M, σ〉 to record the new value d of
attribute a is defined as o⊕ {a 7→ d} = 〈r,M, σ ⊕ {a 7→ d}〉. For a set S ⊆ O of

objects, S] {〈r,m, σ〉} def
= (S\{o|ref(o) = r}) ∪ {〈r,M, σ〉}.

Notice that this definition requires dynamic type matching and the type of
the object needs to be consistent with the declared type. When le is x, the new
value of x is now the head of the sequence of values, replacing the old value of
x in the current scope. In the other case, the attached object is found in the
system configuration π and its state is modified accordingly.

Method Call. For a method signature m(V1 x; V2 y; V3 z) let ve, res and vre
be list of expressions representing the arguments passed by value, result and

value-result mechanisms. The semantics of le.m(ve; re; vre) is as follows.

D(le.m(ve;re;vre))
def
= D(le) ∧ type(le) ∈ cname ∧ (le 6= null) ∧
∃N ∈ cname.(type(le) ¹ N) ∧
∃(m 7→ (V1 x; V2 y; V3 z, c1) ∈ op(N))

[[le.m(ve;re;vre)]]
def
= (D(le.m(ve;re;vre)) ⇒ ∃C ∈ cname.(type(le) = C) ∧ (

[[var V1 x = ve; V2 y; V3 z = vre]];

[[var C self = le]]; [[Execute(C.m)]]; [[re, vre := y, z]];

[[end self, x, y, z]]).

If method m is not declared in C but in a superclass N of C then

[[Execute(C.m)]]
def
= [[Execute(M.m)]],

where M is the immediate superclass of C and M ¹ N . Given a class A and
a method m the semantics of Execute(A.m) comprises setting the execution
environment, then executing the body of the method and finally resetting the
environment. Thus, [[Execute(A.m)]]

def
= Set(A); body(A.m); Reset, where Set(A)

sets the variable visibleattr with the set of attributes visible in class A, that is,
attributes of A, public and protected attributes inherited from superclasses of
A, and public attributes of public classes. Reset sets the variable visibleattr to
the set of attributes that are accessible by the main program, that is, the public
attributes of public classes. The term body(A, m) is the body c of method m.
The prefix self is added to each attribute and method in c, to guarantee that
the environment is set correctly when a nested method call that may change the
execution environment is completed. See [6] for a detailed explanation.

Based on the semantics of a class declaration, [[Cdecls]], and on the semantics
of commands, [[c]], the semantics of a program is defined as

[[Cdecls •Main]]
def
= ∃Ω, Ω′, internalvar , internalvar ′ • ([[Cdecls]]; Init ; [[Main]]),

Init
def
= D(Cdecls) ` visibleatr ′ = ∅ ∧ π′ = ∅ ∧

∧

x∈Var

(x′ = 〈〉 ∧ Typeseq = 〈〉),

[[Main]]
def
= D(Main) ⇒ [[c]],

where internalvar is the set of variables in localvar , π and visibleattr , Init cor-
responds to the initialization of variables, and Main is the main program.

3 Laws

The main difference between copy and reference semantics is the possibility of
aliasing when the reference semantics is considered. Aliasing can occur through

assignments and parameter passing. Aliasing can cause a range of difficult prob-
lems within object-oriented programs, because a referring object can change the
state of the aliased object, implicitly affecting all the other referring objects [20].

A comprehensive set of laws of an object-oriented language based on copy
semantics has been proposed in [16]. This work distinguishes command laws and
laws for classes. As aliasing is related to assignment and parameter passing, the
laws for classes proposed in [16] are also valid for reference semantics. These
laws deal, among other constructs, with changing visibility of attributes (from
private to protected and from protected to public), introducing new class decla-
rations, removing unused classes, introducing fresh attributes, removing unused
attributes, introducing new methods, removing redundant or unused methods,
introducing inheritance, and moving attributes and methods to a superclass.

Nevertheless, some command laws are not valid in the context of reference
semantics, and here we propose adaptations of such laws for this new context
(Sect. 3.1). Moreover, we propose new laws valid only in the context of a reference
semantics (Sect. 3.2). We briefly address soundness by presenting the proof of
one of these laws in Appendix A, using the rCOS semantics, given in Sect. 2.

An important point to notice is that we consider reference semantics assuming
that expressions are side-effect free, as in Java [21], which does not allow pointer
manipulation, and attaches a copy semantics to assignments involving variables
of primitive types.

Before presenting new laws, we reproduce here laws 1 (var elim), 2 (var final
value) and 3 (;-/. distrib), valid for both copy and reference semantics, as they
are used in the development of the case study of Sect. 4.

We say that a variable of process c1 is free, denoted free(c1), if it is not
declared in the local block under consideration, and bound otherwise. Similarly,
we use free(e) for the free variable of an expression e. If a declared variable is
never used, its declaration has no effect.

Law 1 (var elim) var T x; c; end x = c, if x /∈ free(c).

There is no point in assigning to a variable at the very end of its scope.
Moreover, evaluation of a condition is not affected by what happens afterwards,
and therefore sequential composition distributes leftwards through a conditional.
These facts are captured by the next two laws, respectively.

Law 2 (var final value) var T x; c; x := e; end x = var T x; c; end x

Law 3 (;-/. distrib) (c1 / b . c2); c3 = (c1; c3) / b . (c2; c3)

3.1 Revising Laws Valid only for Copy Semantics

There are laws valid for copy semantics that, in general, are not valid for refer-
ence semantics. In what follows we discuss the problems that arise in some of
these laws and we introduce a revised law valid for reference semantics. A more
complete set of such laws can be found in [19].

The sequential composition of two assignments to the same list of variables
is easily combined to a single assignment, when copy semantics is considered.

Law 4 (combine assignments) le := e; le := f = le := f[e/le]

The notation f[e/le] denotes the substitution of le by the free occurrences
of e in f. In the context of reference semantics, this law does not hold in general
when le is a reference to an object. Assuming that le is a reference, we consider
two kinds of assignments, depending on the form of le. If le is a variable x, the
law is still valid, as it corresponds to two consecutive associations of objects to
le, which is equivalent to the last association. However, if le is of form le.a,
the following situation might happen. Assume x and y reference the same object,
say an account with balance 2; the sequence of assignments

x.balance := y.balance + 1; x.balance := y.balance + x.balance

increases the balance attribute to 6, whereas the combined assignment

x.balance := y.balance + (y.balance + 1)

updates it to 5.
To be valid for reference semantics we must introduce conditions on the

application of the law. In this case, if there is no aliasing between variables of le
and variables of f, the law is sound. We introduce the function nosh(le,f) to
capture this fact, where nosh stands for ‘no sharing’; it yields true in the absence
of aliasing. Thus, for reference semantics the law is as follows.

Law 5 (revised combine assignments)
If nosh(le,f) then le := e; le := f = le := f[e/le].

The computation of nosh depends on the context of the transformation. A precise
definition of nosh clearly requires dynamic analysis. For the purposes of program
transformation, however, it is desirable that the side conditions be syntactic.
Through a static analysis of the relevant program context we are able to decide
if there is a possibility of aliasing. To perform this analysis a graph that captures
the dependency among variables is constructed and examined (see [19]), based
on some ideas of [22, 23].

If two consecutive assignments do not share data, the order does not matter.
For copy semantics the following law is valid.

Law 6 (order independent assignments)
le1 := e; le2 := f = le2 := f; le1 := e,

provided le1 /∈ free(f) and le2 /∈ free(e).

This law presents a similar problem as the one discussed in Law 4 (combine
assignments). If le1 and le2 have the form x, this corresponds to the attachment
of a new value to these variables and the effect is the same as for variables of
primitive types. However, if either le1 or le2 is of the form le.a the conditions
nosh(le1,f) and nosh(le2,e) are required. The modified law for reference se-
mantics is as follows.

Law 7 (revised order independent assignments)
If (nosh(le1,f) ∧ nosh(le2,e) ∧ le1 /∈ free(f) ∧ le2 /∈ free(e)) then

le1 := e; le2 := f = le2 := f; le1 := e.

Assignment distribution rightwards through a conditional; the next law is
also valid only for copy semantics.

Law 8 (assignment-/. distrib) If le /∈ free(b) then

(le := e); c1/ b .c2 = (le := e; c1)/ b .(le := e; c2)

If le is of the form x, this corresponds to an association of a new value to le and
as le does not occur in b, the assignment can safely take place after b evaluation.
However, if le is of the form le.a the condition nosh(le,b) is required. The
modified law for reference semantics is presented below.

Law 9 (revised assignment-/. distrib 1) If (nosh(le,b) ∧ le /∈ free(b))

then (le := e); c1/ b .c2 = (le := e; c1)/ b .(le := e; c2).

However, a particular case of this law is valid for both copy and reference seman-
tics. Consider an assignment le := e. Assuming that le is an object identifier,
this creates an aliasing between le and e. Such an assignment distributes left-
wards through a conditional, if the condition contains ocurrences of e, but no
further aliasing with le.

Law 10 (revised assignment-/. distrib 2) If nosh(le,b[null]) then

(le := e); c1/ b[e] .c2 = (le := e; c1)/ b[e] .(le :=e; c2).

The notation b[e] means that b might contain occurrences of e. The condition
nosh(le,b[null]) captures that there is no sharing between le and b; null is
used in place of e (b[null]) to check that le has no further aliasing with b.

3.2 Laws Valid only for Reference Semantics

The introduction of aliasing motivates the investigation of new laws. In this
section we introduce laws valid only in a context of reference semantics. We are
also considering as an implicit condition that le refers to an object, so it is not
a variable of a primitive type. We use the notation leo to remark this fact.

Permutation of assignments are possible in some situations.

Law 11 (assignment permutation)
c; leo := e = leo := e; c, provided ∀ x /∈ free(c) • nosh(leo,x).

This law is not valid in general for copy semantics as the value of e might be
altered in c and, in this case, leo will hold the old value on the right-hand side
of the law. This problem does not arise in reference semantics because leo and
e are aliased and any change in e on the right-hand side will also reflect in leo.

If two variables are aliased, it does not matter which one is chosen to use.

Law 12 (assignment seq substitution) leo := e; c = leo := e; c[e/leo],

provided the aliasing of leo and e is preserved in c.

To check the aliasing of leo and e it is enough to do an inspection of the
code and check the condition ¬(nosh(leo,e)).

To see why this law is not valid for copy semantics, consider the case in
which e is z and c is a method call z.m(), where m is a method that updates an
attribute of the object referenced by z. By applying the law we have

leo := z; z.m() = leo := z; leo.m().

If we consider reference semantics, this equality is valid as z and leo refer to the
same object. However, in the context of copy semantics this is not the case; on the
left-hand side the object referenced by z is updated, whereas on the right-hand
side the object referenced by leo is modified and they are distinct objects.

As mentioned before, alias can occur through assignments and parameter
passing. Thus, there are analogous laws to the previous one that substitute the
assignment by a method call to m through which the aliasing between leo and
e occurs. There are several situations to consider. For example, the method call
could be leo.m(∅, ∅,e) and the body of m includes an assignment self := e.
In another context, both leo and e could be passed as result or value-result
arguments of m and the body of m includes an assignment x := y, where x and
y are the formal parameters that match leo and e, respectively. The aliasing
between leo and e may occur in a sequence of nested method calls, and so on.

To abstract all situations in which aliasing could happen, we introduce the
notation c[alias(leo,e)], meaning that c is a command that establishes an
alias between leo and e. The previous law can be generalized as follows.

Law 13 (aliasing seq substitution)
c1[alias(leo,e)]; c2 = c1[alias(leo,e)]; c2[leo/e],

provided the alias of leo and e is preserved in c1.

If two variables leo1 and leo2 are aliased, sequential assignments of leo1 to
leo2 and vice-versa have no effect.

Law 14 (consecutive sequential assignment)
c[alias(leo1,leo2)] = c[alias(leo1,leo2)]; leo1 := leo2

= c[alias(leo1,leo2)]; leo2 := leo1

As leo1 and leo2 reference the same object, the last assignment after execut-
ing c can be regarded as the skip command in the previous law and, therefore, can
be removed. However, for copy semantics, the final assignment cannot be elimi-
nated, otherwise the updating of leo1 (or leo2) is not perceived by leo2 (or leo1).

4 Application: Code Refactoring

The proposed laws can be used to formalize refactorings and, more generally, to
improve code structure. For example, Rule 1 (extract/inline method) expresses
the Extract/Inline refactoring [18], which can be proved using some of the laws
presented in Sect. 3 (see [19]). The extract method is used to group code frag-
ments as a new method. The inline method does the opposite task.

Cornélio [17] gives a formalization of this law for copy semantics. In his
formalization, types of variables in a must be of a basic type, otherwise changes
of objects in m2 may not be reflected in variables of m1. This is a severe restriction
in the application of the general refactoring proposed by Fowler. In the context
of reference semantics, we are able to deal with the general case.

Let cds be the set of declared classes of program P. Let c be the main
command of P. Let A and C be classes of cds.

Rule 1 (extract/inline method)
class A extends C{ads;m1(pds1){c1[c2[a]]};mts}
=

class A extends C{ads;m1(pds1){c1’};m2(pds2){c2[α(pds2);mts’}

where

c1[c2[a]] denotes that c2[a] is a fragment of code of c1,

c1’
def
= c1[self.m2(a)/c2(a)], mts

def
= mts’[c2[a]/self.m2(a)],

a is the set of variables of c2, not including attributes of class A;

provided

(1) parameters in pds2 must have the same types as variables in a;

(2) method m2 is not declared in mts nor in any superclass or subclass

of A in cds; (3) m2 does not appear in c nor in mts, for any B ¹ A.

In this rule, from left to right, the fragment of code represented by c2 is
extracted from all methods in A (m1 and mts) and a new method with body c2 is
created. The modified methods then call the created method. The reverse action
is done when applying the rule from right to left.

To apply this transformation we consider some issues, captured by the side
conditions associated to the rule. The first condition is obviously necessary to
guarantee a safe type matching, and is required in both directions of the rule
application. The second condition is necessary for the application from left to
right, requiring that the name m2 be fresh. The third condition is necessary for
the application from right to left, to guarantee that only methods of class A calls
m2 and thus it is possible to inline its body.

Similar refactorings can be formalized in an analogous way. To illustrate an
application of code restructure that uses the above refactoring and some of the
proposed laws, consider a fragment of program that searches and updates an
element of an array; this is intentionally unstructured, combining the actions
related to search and update into a single method as shown in Fig. 1.

The goal is to transform this program into the one in Fig. 2, in which a
method search has been introduced to separate the tasks of updating and search-
ing in different methods.

To improve the code structure we begin with the example of Fig. 1 and by
applying some of the laws introduced in Sect. 3, we reach the code depicted
in Fig. 2. As each law is proved considering the rCOS semantics (see [19] for

class BasicEntity {
private T1 at1; T2 at2;

method update(T2 m ; ∅; ∅){at2 := m};
getat1(∅; T1 n; ∅){n:=at1}}

class Application {
private BasicEntity data[]; -- assume the last element is null

method updateApplication(T1 num, T2 value; T2 reply ; ∅)
{ Int i = 1;

Int len, number; Bool stop;

len := data.length(); stop := false;

SKIP / data[i] == null . {
((¬ stop) and (i<=len)) ∗

{data[i].getat1(∅, number, ∅);
stop := true / number = num . i := i + 1}}

{reply := "Failed Updating"} / data[i] == null .
{data[i].update(value, ∅, ∅); reply:= "Successful Updating"}}}

Fig. 1. Searching and updating an element of an array in a single method.

class BasicEntity {... }
class Application {

private BasicEntity data[]; -- assume the last element is null

method search(T1 num; BasicEntity obj; ∅) {
Int i = 1;

Int len, number; Bool Stop

len := data.length(); stop := false;

SKIP / data[i] == null . {
((¬ stop) and (i<=len)) ∗

{data[i].getat1(∅, number, ∅);
stop := true / number = num . i := i + 1}}

obj:=data[i]}
method updateApplication(T1 num, T2 value; T2 reply ; ∅} {

BasicEntity elem;

self.search(num, elem, ∅);
{reply := "Failed Updating"} / elem == null .
{elem.update(value, ∅, ∅); reply:= "Successful Updating" }}}

Fig. 2. An example of searching and updating an element of an array.

details), the code transformation is sound. Thus, initially we apply Law 1 (var
elim) to introduce a declaration of obj in method updateApplication. After
that, we apply Law 2 (var final value) to introduce the alias between obj and
data[i] (see Fig. 3).

Then we apply Law 3 (;-/. distrib) to move the assignment to obj to inside
the conditional. Now, we apply Law 7 (revised order independent assignment)
twice to permute the assignment to obj. In this case, as data[i] and reply are of
different types, nosh(reply,data[i]) is trivially true, as well as nosh(obj,k),

class BasicEntity {...} class Application {...
method updateApplication(T1 num, T2 value; T2 reply ; ∅}
{ ... BasicEntity obj; ...

{reply := "Failed Updating"} / data[i] == null .
{data[i].update(value); reply:= "Successful Updating"}}}

obj:= data[i];

Fig. 3. Applying laws 1 (var elim) and 2 (var final value) in the case study of Fig. 1.

where k is the string data. Moreover, obj and reply are not on the right-hand
side expressions of both assignments. Next, we use Law 11 (assignment per-
mutation) to permute the assignment to obj. Then, we use Law 10 (revised
assignment-/. 2) to permute again the assignment to obj. Fig. 4 shows the re-
sulting code. Next, we apply Law 12 (assignment seq substitution) to replace
data[i] with obj. Finally, we apply Rule 1 (extract/inline method) to extract
the search method achieving the program depicted in Fig. 2.

class BasicEntity {...} class Application {...
method updateApplication(T1 num, T2 value; T2 reply ; ∅}
{ ... BasicEntity obj; ...

{ obj := data[i];
reply := "Failed Updating"} / data[i] == null .

{data[i].update(value); reply:= "Successful Updating"}}}

Fig. 4. Applying laws 3 (;-/. distrib), 7 (revised order independent assignment), 11
(assignment permutation) and 10 (revised assignment-/. 2) in the example of Fig. 3.

5 Conclusions

Programming laws for imperative and concurrent languages are well established
and have been proven useful in the design of applications of program transfor-
mation like compilers [24] and hardware/software partitioning [25]. The major
contribution of this work is to provide a set of laws for object-oriented languages
based on a reference semantics. We have considered laws already proposed for
copy semantics, that are not valid for reference semantics, and for each of these
laws, we have proposed a revised version for reference semantics. Furthermore,
this work introduces new laws valid only for reference semantics. We are not
aware of any other result in this direction.

A common criticism of the algebraic style is that merely postulating algebraic
laws can give rise to complex and unexpected interactions between programming
construction. This can be avoided by the verification of the laws in a mathemat-
ical model. Our laws have been proved sound with respect to rCOS semantics,
as illustrated in the appendix.

Although the case study presented here is simple, it illustrates the benefits of
using algebraic laws to improve code structure, in a sound way, in the presence
of aliasing. To develop more elaborated case studies is an important future work.
These case studies will be particularly useful to validate and possibly extend the
proposed set of laws.

We have not presented laws to support data refinement. In a context of
reference semantics, this is a challenging work. Although data refinement can be
proved directly in the semantics, this tends to be a laborious task. We intend to
investigate laws for data refinement in the style of Morgan’s work [5], based on
approaches to confinement [26].

A complementary work is the development of tools. An initial work in this
direction has already been performed for laws of ROOL [27], using the rewriting
system CafeOBJ [28]. We intend to extend this work in the context of refer-
ence semantics.

References

1. Abadi, M., Leino, K.R.M.: A logic of object-oriented programs. In Bidoit, M.,
Dauchet, M., eds.: TAPSOFT’97: Theory and Practice of Software Development.
Volume 1214 of LNCS, Springer-Verlag (1997)

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12 (1969) 576–580

3. Müller, P., Poetzsch-Hefter, A.: Formal specification techniques for object-oriented
programs. In Jarke, M., Pasedach, K., Pohl, K., eds.: Informatik 97: Informatik
als Innovationsmotor, Springer-Verlag (1997)

4. Cavalcanti, A.L.C., Naumann, D.A.: A weakest precondition semantics for refine-
ment of object-oriented programs. IEEE Transactions on Software Engineering 26
(2000) 713–728

5. Morgan, C.: Programming from Specifications. 2nd edn. Prentice-Hall (1994)

6. He, J., Li, X., Liu, Z.: rCOS: A refinement calculus of object systems. Theoretical
Computer Science 365 (2006) 109–142

7. He, J., Hoare, C.A.R.: Unifying Theories of Programming. Prentice-Hall (1998)

8. Santos, T., Cavalcanti, A.L.C., Sampaio, A.: Object-orientation in the UTP. In:
Unifying Theories of Programming (UTP 2006). Volume 4010 of LNCS, Springer-
Verlag (2006) 18–37

9. Cavalcanti, A.L.C., Harwood, W., Woodcock, J.C.P.: Pointers and records in the
unifying theories of programming. In: Unifying Theories of Programming. Volume
4010 of LNCS, Springer-Verlag (2006)

10. Hoare, C.A.R., Hayes, I.J., He, J., Morgan, C., Roscoe, A.W., Sanders, J.W.,
Sorensen, I.H., Spivey, J.M., Sufrin, B.A.: Laws of programming. Commun. ACM
30 (1987) 672–686

11. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall (1997)

12. Seres, S., Spivey, J.M., Hoare, C.A.R.: Algebra of logic programming. In: ICPL
(1999)

13. Roscoe, A.W., Hoare, C.A.: The laws of occam programming. Theoretical Com-
puter Science 60 (1988) 177–229

14. Mikhajlova, A., Sekerinski, E.: Class refinement and interface refinement in object-
oriented programs. In Fitzgerald, J., Jones, C.B., Lucas, P., eds.: FME’97: Indus-
trial Benefit of Formal Methods. Volume 1313 of LNCS, Springer-Verlag (1997)
82–101

15. Leino, K.R.M.: Recursive object types in a logic of object-oriented programming.
Nordic Journal of Computing 5 (1998) 330–360

16. Borba, P., Sampaio, A., Cavalcanti, A.L.C., Cornélio, M.: Algebraic reasoning for
object-oriented programming. Sci. Comput. Programming 52 (2004) 53–100

17. Cornélio, M.: Refactoring as Formal Refinements. PhD thesis, Federal University
of Pernambuco, Centro de Informática, UFPE, Recife, Brazil (2004)

18. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(2000)

19. Silva, L., Sampaio, A., Liu, Z.: Laws of object-oriented languages: copy versus refer-
ence semantics. Technical Report www.cin.ufpe.br/~lmas/report-laws.pdf, UFPE
(2007)

20. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: European Conference
on Object-Oriented Programming (ECOOP). LNCS, Springer-Verlag (1998)

21. Gosling, J., J.B., Steele, G.: The Java Language Specification. Addison-Wesley
(1996)

22. Aldrich, J., Kostadinov V., Chambers, C.: Alias Annotations for Program Under-
standing. In: Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA) (2002)

23. Jackson, D., Rollins, E.: Abstractions of program dependencies for reverse engi-
neering. In: Proc. ACM SIGSOFT Conf. on Foundations of Software Engineering
(1994)

24. Sampaio, A.: An Algebraic Approach to Compiler Design. Volume 4 of AMAST
Series in Computing. World Scientific (1997)

25. Silva, L., Sampaio, A., Barros, E.: A constructive approach to hardware/software
partitioning. Formal Methods In System Design 24 (2004) 45–90

26. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation in-
dependence for object-oriented programs. Journal of the ACM 52 (2005) 894–960

27. Carvalho Jr., A.C., Silva, L., Cornélio, M.: Using CafeOBJ to mechanize refactoring
proofs and applications. In Sampaio, A., Moreira, A.F., Ribeiro, L., eds.: Brazilian
Symposium on Formal Methods. (2005) 32–46

28. Nakagawa, A., Savada, T., Futatsugui, K.: CafeOBJ user’s manual.
www.ldl.jaist.ac.jp/cafeobj/doc (1999) version 1.4.2.

A Proof of Law 11 (assignment permutation)

The proofs of this law use the following auxiliary results of designs and predi-
cates, extracted from [7].

Law 15 (predicate 1) true;false = false = false;true

Law 16 (;-predicate)

P(v’);Q(v)
def
= ∃ v0 •P(v0)∧ Q(v0), provided outαP = inα’Q ={v’}

outαP is the output variables v’ of P and inαQ is the input variables of Q.
The normal combinators of the programming language have exactly the same

meaning as operators on the single predicates as they have on the double predi-
cates of the refinement calculus.

Theorem 1. Let P1, P2, Q1 and Q2 be predicates

(P1 ` Q1) / b . (P2 ` Q2) = (P1 / b . P2) ` (Q1 / b . Q2)

(P1 ` Q1); (P2 ` Q2) = (¬(¬P1; true) ∧ ¬(Q1;¬P2)) ` (Q1; Q2)

An immediate consequence of this theorem is given below.

Corollary 1.
(true ` Q1); (true ` Q2) = true ` (Q1; Q2)

Proof.
LHS

= 〈Theorem 1〉
(¬(¬true; true) ∧ ¬(Q1;¬true)) ` (Q1; Q2)

= 〈predicate calculus and Law 15(predicate 1)〉
(true ∧ true) ` (Q1; Q2)

= 〈boolean algebra〉
RHS

To perform the proof of Law 11 (assignment permutation) we have to consider
all possible forms of command c1. Here we prove the case when c1 is a method
call, as this situation happens in the case study.

Proof.

[[e.m(v, ∅, ∅); le := e]]
= 〈from UTP semantics〉

[[e.m(v, ∅, ∅)]]; [[le := e]]
= 〈semantics of method call and assignment 〉

(true ` ∃C ∈ cname • type(e) = C ∧ [[var T x = v]]; [[var C self = e]];

[[Execute(C.m)]]; [[end self,x]]); (true ` ∀le • ∃le • le
′
= 〈value(e)〉.tail(le))

= 〈semantics of variable declaration and undeclaration; semantics of method call;
Corollary 1; Law 16 (;−predicate)and predicate calculus〉
(true ` ∃C ∈ cname • type(e) = C∧
∃v : T • (∀x, self • ∃x, self • ∃x0, self0 • x0 = 〈value(v)〉.tail(x)∧
self0 = 〈value(e)〉.tail(self) ∧ π′ = {〈r, C, σ0

⊕{a 7→ v}〉|r = ref(value(e))}∧
self

′
= tail(self0) ∧ x′ = tail(x0))); (true ` ∀le • ∃le • le

′
= 〈value(e)〉.tail(le))

= 〈predicate calculus, Corollary 1; Law 16 (;−predicate)〉
true ` (∃C ∈ cname • type(e) = C∧
∃v : T • (∀x, self • ∃x, self • ∃x0, self0 • x0 = 〈value(v)〉.tail(x)∧
self0 = 〈value(e)〉.tail(self) ∧ π′ = {〈r, C, σ0

⊕{a 7→ v}〉|r = ref(value(e))}∧
self

′
= tail(self0) ∧ x′ = tail(x0)) ∧ ∀le • ∃le • le

′
= 〈value(e)〉.tail(le))

= 〈le is free in the previous predicate; predicate calculus〉
true ` (∀le • ∃le • le

′
= 〈value(e)〉.tail(le))∧

(∃C ∈ cname • type(e) = C ∧ ∃v : T • (∀x, self • ∃x, self•
π′ = {〈r, C, σ0

⊕{a 7→ v}〉|r = ref(value(e))} ∧ self
′
= self ∧ x′ = x))

= 〈Law 16(;-predicate); Corollary 1; Theorem 1 and predicate calculus〉
[[le := e]]; [[e.m(v, ∅, ∅)]]

= 〈from UTP semantics〉
[[le := e; e.m(v, ∅, ∅)]]

ut

