
Methods and Tools for Formal Software Engineering

Zhiming Liu1? and R. Venkatesh2

1 International Institute for Software Technology
United Nations University, Macao SAR, China

Z.liu@iist.unu.edu
2 Tata Research and Design Development Centre, Pune, India

r.venky@tcs.com

Abstract. We propose a collaboration project to integrate the research effort and
results obtained at UNU-IIST on formal techniques in component and object sys-
tems with research at TRDDC in modelling and development of tools that support
object-oriented and component-based design. The main theme is an integration of
verification techniques with engineering methods of modelling and design, and
an integration of verification tools and transformation tools. This will result in
a method in which acorrectprogram can be developed through transformations
that are either proven to be correct or by showing that the transformed model can
be proven correct by a verification tool.

1 Formal Software Engineering and the Grand Challenge

The goal of the Verifying Compiler Grand Challenge [7, 6] is to build a verifying com-
piler that

“uses mathematical and logical reasoning to check the programs that it com-
piles.”

This implies that “a program should be allowed to run only if it is both syntactically
and semantically correct” [20]. To achieve this goal, the whole computing community
have to deal with a wide range of issues, among which are [2]

1. arriving at automated procedures of abstraction that enables a compiler to work in
combination with different program verification tools including testing tools,

2. studying what, where, when and how the correctness properties, i.e. assertions and
annotations, are identified and specified,

3. identifying properties that can be verified compositionally, and designing specifi-
cation notations and models to support more compositional specification, analysis
and verification.

4. making tools that are scalable even with specified correctness criteria,

? This work is partially supported by the projects HighQSoftD funded by Macao Science and
Technology Fund, NSFC-60573085, NSFC-60673114 and 863 of China 2006AA01Z165.

In our view, theories and techniques are a long way from being able to solve the first
three problems, and solutions to these problems is obviously vital for dealing with the
fourth problem.

In this position paper, we propose the developmentFormal Software Engineering
as a method to develop large software systems using engineering methods and tools
that are verifiable. We propose formal modelling of requirements and design, and the
automatic generation of code to achieve this. We believe that this effort will contribute
towards a solution to the problems stated earlier, in a way that combine techniques and
tools ofverificationand those ofcorrectness by construction[20].

1.1 The state of the art in software engineering

Software engineering is mainly concerned with the systematic development of large and
complex systems. To cope with the required scale traditional software engineers divide
the problem along three axes - development phases, aspects and evolutions. The de-
velopment phases are - Requirements, Design and Implementation. Each development
phase is divided into different aspects, such as:

– static data model, control flow and operations in the requirements phase;
– design strategies for concurrency, efficiency and security in the design phase. These

strategies are commonly expressed as design patterns [3]; and
– databases, user interface and libraries for security in the implementation phase.

The third axis is that of system evolution and maintenance [9, 8] where each evolu-
tionary step enhances the system by iterating through the requirements - implementation
cycle. Unfortunately all aspects are specified using informal techniques and therefore
this approach does not give the desired assurances and productivity. The main problems
are:

– Since the requirements description is informal there is no way to check for its com-
pleteness, often resulting in gaps.

– The gaps in requirements are often filled by ad-hoc decisions taken by program-
mers who are not qualified for the same. This results in rework during testing and
commissioning.

– There is no traceability between requirements and the implementation, making it
very expensive to accommodate changes and maintain the system.

– Most of the available tools are for project management and system testing. They are
not enough to ensure the semantic alignment of the implementation w.r.t a require-
ments specification and semantic consistency of any changes made in the system.

1.2 The state of the art of formal methods

Formal methods, on the other hand, attempt to complement informal engineering meth-
ods by techniques for formal modelling, specification, verification and refinement. They
have been extensively researched and studied. A range of semantic theories, specifica-
tion languages, design techniques, and verification methods and tools have been de-
veloped and applied to the construction of programs of moderate size that are used in

critical applications. However, it is still a challenge is to scale up formal methods and
integrate them into engineering development processes for the correct construction and
maintenance of software systems, due to the following problems:

– Each development is usually a new development with very little reuse of past de-
velopment.

– Because of the theoretical goal of completeness and independence, refinement cal-
culi provide rules only for a small change in each step. Refinement calculi there-
fore do not scale up in practice. Data refinement requires definition of a semantic
relation between the programs (their state space) and is hard to be applied system-
atically.

– Given low level designs or implementations it is not easy for software engineers to
build correct and proper models that can be verified by model checking tools.

– There is no explicit support for productivity enhancing techniques such as component-
based development or aspect-oriented development.

We also observe that verification techniques and tools (e.g. model checking, SAT solv-
ing, etc.) have only been relatively effective only in the development of hardware sys-
tems. An integration of such methods with software development is highly required by
the manufacturers of critical and embedded software (avionics, telecom, public trans-
port, etc.). However, the sophisticated nature of software (complex data structures, re-
cursion, multithreading) poses challenging theoretic and practical problems to the de-
velopers of automatic analysis and verification methods.

Both formal methods and the methods adopted by software engineers are far from
meeting the quality and productivity needs of the industry, which continues to be plagued
by high development and maintenance costs. Complete assurance of correctness re-
quires too much to specify and verify and thus a full automation of the verification is
infeasible. However, recently there have been encouraging developments in both ap-
proaches. The software engineering community has started using precise models for
early requirement analysis and design [18]. Theories and methods for object-oriented,
component-based and aspect-oriented modelling and development are gaining the atten-
tion of the formal methods community. There are attempts to investigate formal aspects
of object-oriented refinement, design patterns, refactoring and coordination [12].

1.3 Aims and Objective

The aim of this project is to combine the strengths of software engineering techniques
and formal methods thus enabling the development of systems that have the assurances
possible due to formal methods and productivity and scale-up achievable by methods
adopted by software engineers.

We will focus on the development of a theory of modelling (or specification), anal-
ysis and refinement of component and object systems, and a toolset that integrates two
kinds of complementary tools: tools for analysis (model checkers and theorem provers)
and tools for correctness preserving transformations, including design patterns and do-
main specific transformations. We will study and verify the correctness of the transfor-
mations, aiming at verified designs transformations to scale up formal methods by

– exploiting standard design patterns and strategies existing in large applications,
even across applications;

– providing verified design patterns and strategies to reduce the burden on (auto-
mated) proofs; and

– proving functionality correctness only at the specification stage.

We can also think this is about the development of a CASE tool that is supported by a
formal theory and combines model transformation and model verification.

2 Formal Modelling of Complex Systems

This section gives a brief outline of the technique and solution to be investigated by this
project. The techniques are explained using a simple example of a library system, that
maintains a collection of books. Members belonging to the library borrow and return
books. In order to keep the explanation simple and readable we have not been rigorous
in the specification of the library system. For more formality, we refer the reader to
the paper [14]. Also in [17], a Point of Sale (POST) system was formally developed,
including a C# implementation.

2.1 Requirements modelling

For an object system or a component, the development process begins with the spec-
ification of functional requirements. Functional requirements of a system consists of
three aspects: the state, a set of operations through which external agents may interact
with the system, and a set of global properties that must be satisfied by the state and
operations. This can be represented as a tripleRM = 〈S, O, I〉 whereS is a model of
the state,O is a set of operations that modify the state andI is a set of global invariants.
Each operation inO is expressed as a pre- post-condition pair [12]. A requirements
model is consistent if each operation inO is consistent with the state model and pre-
serves the global invariant. The model can be further enhanced by adding descriptions
of interaction protocols with the environment [5], timing aspects, features of security,
etc. A multi-view and multi-notation modelling language, such as a formalized subset
of the Unified Modelling Language(UML) [19], can be used to specify this model and
analyzed for inconsistencies using model-checking techniques as demonstrated in [22].
The analysis can be carried out incrementally, a small number of use cases at a time
that only involve a small number of domain classes [14]. This is obviously important to
development of tool support to the analysis.

Library requirements The state space of the library system is represented by the tu-
ple 〈Shelf, Book, Member, Loan : Book× Member, isIn : Book× Shelf〉 where,Book,
MemberandShelf are set of books, members and shelves in the library.Loan is a set
of tuples representing the books that have been currently loaned to members. The asso-
ciation isIn is a set of tuples representing books that are currently on some shelf. This
state space corresponds to a UML diagram and can be formalized as a class declartion
section of an OO program [14, 13].

The set of operations will be{Borrow(Member, Book), Return(Member, Book)}.
These operations are identified from the use cases [14]. TheBorrow operation can be
described as

signature : Borrow(S, S′ : State, b : Book, m : Member)
pre− condition : ¬∃m1 : Member• 〈b, m1〉 ∈ S.Loan
post− condition : S′.Loan= S.Loan∪ 〈b, m〉 ∧ S′.isIn = S.isIn− 〈b, s〉

Returncan be defined similarly.
A sample invariant isBookInvariant, which states that every book in the library is

either on the shelf or loaned to a member. This can be stated as follows.

BookInvariant(S : State)
def
= ∀b : S.Book• ∃m : Member• 〈b, m〉 ∈ S.Loan∧

¬∃s : Shelf• 〈b, s〉 ∈ S.isIn
∨ ¬∃m : Member• 〈b, m〉 ∈ S.Loan∧
∃s : Shelf• 〈b, s〉 ∈ S.isIn

Details on the formalisation of a use-case model and its consistency relation with a class
model (i.e. the state space) can be found in [14].

2.2 Design

Design involves transforming the requirements model of a system to a model with de-
sign details, by design strategies or patterns as functional decomposition and object or
class decomposition. This model is still platform independent models (PIM) [13].

In a later stage, the PIM is transformed to a model of a platform or a family of plat-
forms (PDM) with desired non-functional properties such as - support for concurrent or
parallel execution, performance and usability. The platform may be modelled by a tu-
ple,〈Sp, Op〉 whereSp is a meta-model of the platform state andOp is a set of platform
operations which maybe combined using a set of available operators.

Given a PDM, a system is designed by transforming the PIM state,S to a design
stateSd that is an instance of the PDM stateSp and transforming each operationo∈ O
to an operationod, which is expressed as a composition of operations inOp. The design
step also specifies a set of design invariantsId that the design operations must preserve.
Thus the design model is a triple,〈Sd, Od, Id〉 whereOd is the set of all transformed
operations and the design process consists of two transform functions〈Ts, To〉 where
Ts : S → Sd is the state transformation function andTo : O → Od is the operations
transformation function. A design is correct if the two transformation functions are
consistent that is the diagram in Figure 1 commutes and the design operations preserve
the design invariants.

Library design To simplify the presentation assume the library requirements model
to consist of〈Sr, Or〉, whereSr is a set of class and association names andOr the
operations:

Sr = {Shelf, Book, Member, Loan, isIn}, Or = {Borrow, Return}

s1 s2

sd1 sd2

Ts Ts

o

Td(o)

Fig. 1. Design Transformations

Further associate each operationop with the set of state objectsobj(op) it accesses,
because for concurrency only the object being accessed is relevant and not the details
of the modifications to the object. So

obj(Borrow) = obj(Return) = {Loan, isIn}
Assume the library system is to be implemented on a platform where multiple processes
run the library operations and all of these refer to a set of shared objects. The design
model will be〈Sd, Od〉, where

Sd = Sr ∪ {sl, si}, Od = {Borrowd, Returnd, P, V }

wheresl andsi are semaphores corresponding toLoan andisIn objects, andP and
V are the semaphore operations. The operations in the design are defined by a sequence
of semaphore operations and objects accessed. Thus,

objd(Borrowd) = objd(Returnd) = [sl; si; Loan; isIn; sl; si]

This design guarantees - correctness, mutual exclusion and deadlock freedom.
Instead of designing each library operation individually we can write two design

transformation functions for the library design as follows

Tls
def
= Sr ∪ {Si | Si is a semaphore forsi ∈ Sr}

Tlo(op)
def
= [P1; · · · ; Pk; a1; · · · ; ak; V1; · · · ; Vk] if op is realized by the sequence

a1; . . . ; ak of accesses tos1, . . . , sk

We can prove the correctness of the transformation as required by figure 1. Also,
mutual exclusion and deadlock freedom can be guaranteed. Since the design has been
implemented as a transformation we do not have to prove correctness of the design
specification for each operation, instead we prove correctness of the transformation.

Design PatternsDifferent systems adopt similar design transformation functions. There-
fore the process of formal design can be scaled up by abstracting away from individual
design transformation functions to a design pattern. A design pattern is a meta-function
that maps a requirements model to a design transformation function for that require-
ments model. A design pattern is correct if the mapped design functions are correct

as described above. Design patterns can be proved correct independent of the require-
ments model making them scalable. In the presence of design pattern a design step will
involve selecting and applying the appropriate design patterns.

For the Library example, the design strategy of imposing a total order on the semaphores
can be abstracted out into a transformation function. The transformation function takes
the total order and a requirements specification as input and transforms the requirements
of an arbitrary system into a corresponding design specification. Thus a design pattern
for databased applications that supports multiple users and guarantees mutual exclusion
and deadlock freedom consists of two transformation functions in the form ofTls and
Tlo of the library system.

MasterCraft [1] implements a few such design patterns for some select platforms
and design strategies. MasterCraft however does not support formal specification and
verification of these design patterns. If implemented as a design pattern the atomicity
preservation and deadlock freedom will not have to be proved for each application of
the transformation. All we need to show is that for a given application there the given
total order on objects includes all the objects that are referred to by any of the operations
of the system. We believe that is achievable in the framework ofrCOS.

rCOS also provide a general refinement calculus for correctness preserving trans-
formation between PIMs. General software design patterns, such General Responsibil-
ity Assignment Software Pattern (GRASP) [10], are formalized as refinement rules in
rCOS [13]. Here we use UML to represent some of the refinement rules inrCOS:

Functional Decomposition: This is also known as theexpert patternwhich allows us
to delegate that part of the functionality of methodN in Figure 2, which only refers to
attributesx of classM , to the expertM of informationx.

1n{c[c (o.x)]}

N
o

N

n{c[o.m]}

M

x

1m{c (x)}

M

x

1m{c (x)}

o

Fig. 2. OO Functional Decomposition

Class Decomposition: Figure 3 shows how we can decompose a complex class into
a number of related but simpler classes. Figure 4 represents another way of class de-
composition. Class decomposition rules are known by OO engineers as High Cohesion
Pattern.

Low Coupling: TheLow Coupling Patternrepresented in Figure 5 allows us to obtain
the design in Figure 4 from the design in Figure 3.

More design patterns and pattern-directed refactoring are also studied and applied to
the case study POST [17]. We will extend MasterCraft by adding the implementations
of these rules.

 M 2

o : M (o . o = o . o . o) .
1 2 1

1 1

M 1

22 2m {o . .m }

y
 1 1

2m {c . [o . m] } 2 1 1

x
m {c (x)}

M o

 1

2

1

2 1
m {c [m]}
m {c (x)}

y
x

M

m {o . .m } 1 1 1

o
1

o
2

M

Fig. 3. Class Decomposition 1

 M 2

22 2m {o . .m }

1 1

M 1

2

M

m {o . .m } 1 1

 1

2

1

2 1
m {c [m]}
m {c (x)}

x
m {c (x)}

y
x

M

m { c [o . m] } 2 1 1

m {o . m } 1 1 1

y

o

o 1

2

2

Fig. 4. Class Decomposition 2

3 Research Problems

The previous section presented an overview of a proposed method for formal devel-
opment of large scale systems. To realize this method, we first need to define it more
formally. We aim at a logically sound and systematic method (that we are tempted to
call a formal engineering method) and tools that themselves are provably correct for
supporting the method. The method includes:

1. A language and a logic for specifying and reasoning about a system at different
levels of abstractions.The main task is to develop a notation for describing each
aspect of correctness of a model. This will allow a developer to split a model of
a system into several aspects making it more manageable. This is important for
tool development too. The notation for a particular aspect should be expressive
enough for describing all the concerns about that aspect. However, overlapping
features among different notations should be kept to a minimum else, problems of
inconsistency and integration will become overwhelming3.
The logic should provide a sound link among the different notations to deal with
the problems of model consistency and integration. It should support compositional
reasoning about the whole model by reasoning about the sub-models of the aspects.
Different verification techniques and tools maybe applied to models of different
aspects of functionality, interaction and structure of the system.

3 This is a serious problem in the application of UML.

M1

m1{c[o1.m3()]

M2

M3

m3()

o2

o3

o1
o: M1 o.o2.o3=o.o1.

m2{o3.m3()}

M2

M3

m3()

o3

M1

m1{c[o2.m2()]

o2

Fig. 5. Low Coupling

2. A Language and logic for specifying the transform functions and reasoning about
correctness.The language should preferably be composable. That is, it should
be possible to specify various design transformations independently and compose
them to get a design from requirements. The techniques and tools will include for-
mally proved pattern-directed transformations of specifications to scale up the clas-
sical calculi of refinement. We will also investigate the use of model checking and
static analysis techniques and tools for consistency and analysis of properties of
models. For specification and analysis of coordination among components, simu-
lation techniques and tools can be used. Transformation of different sub-models
may need different verification techniques and tools. Data refinements will be real-
ized by structural transformations following design patterns that are scaled up from
object-oriented design.

3. Automatic code generators that implement the implementation functions for vari-
ous platforms.Refactoring transformation of designs and implementations will be
studied and implemented in the tool support.

4. Techniques and tools for domain-specific languages and their programming(such
as web-based service and transaction system based on internet).

The main theme of the project is to integrate formal verification techniques and
tools with design techniques and tools of model (or specification) transformations. Ver-
ification and transformation will work complementary to ensure the correctness of the
resultant specification. The design techniques and transformation tools are essential in
the development to transform the requirements specification to a model that is easy to
be handled with the verification techniques and tools. The design and transformation
have to be carried interactively between the designer and the tool. Verification tools can
be also invoked during a transformation [21].

This project will be conducted in a close collaboration between UNU-IIST and
TRDDC. UNU-IIST is particularly strong in theories and techniques for program mod-
elling, design and verification, and TRDDC is the largest industry research development
and design centre in India. We will investigate how the research results at UNU-IIST
in theories and techniques of program modelling, design and verification can be used
in the design of software development tools at TRDDC. A separate position paper by
UNU-IIST is also presented at this conference [2].

Related Work at UNU-IIST and TRDDC

TRDDC and UNU-IIST have been approaching the above problem from two different
ends. TRDDC has expertise in software engineering techniques and has been research-
ing this area for several years now. These efforts have resulted in MasterCraft [1], a tool
that generates code for different platforms from design specifications. Current research
activities at TRDDC include graph-based languages for specifying requirements [22]
and transformations. The requirements group has successfully used model checking to
verify correctness of requirements of a few projects. The work on transformation spec-
ifications has resulted in a proposal as a standard in response to an OMG request. The
proposal is in an advanced stage of acceptance.

UNU-IIST has been working on formalizing object-oriented development. This
work has resulted in a relational model for object-oriented design and an associated
refinement calculus [13]. The refinement calculus supports incremental and iterative
development [14]. The model is current being extended to support component-based
development [5]. Initial progress have been made in experimental development of tool
support [11, 16]. Promising results have been achieved in unifying different verification
methods [4, 15].

4 Summary

We believe that we need to advance theories, tools and experiments for both verification
and design, and to scale them up to meet business and engineering projects need. For
this, we propose component-based modelling and design by transformations so that a
software designer can

– apply verified model transformations or define a transformation and verify it after
applying it,

– model method bodies (hopefully, the methods now are simple)
– generate proof-carrying code from target model

References

1. Mastercraft. Tata Consultancy Services. http://www. tata-mastercraft.com.
2. B.K. Aichernig, J. He, Z. Liu, and M. Reed. Theories and techniques of program modelling,

design and verification. IFIP Working Conference on Verified Software: Theories, Tools and
Experiments (VSTTE), 2005.

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns, Elements of Reusable
Object-Oriented Software. Addlison Wesley, 1994.

4. J. He. Link simulation with refinement. InProc of The 25th anniversary of CSP, 2004.
5. J. He, X. Li, and Z. Liu. Component-based software engineering – the need to link methods

and their theories. In H.V. Dang and M. Wirsing, editors,Proc. of ICTAC05, International
Colloquium on Theoretical Aspects of Computing, Lecture Notes in Computer Science 3722,
pages 72–97. Springer, 2005.

6. A.C.R. Hoare and J. Misra. Verified software: Theories, tools and experiments. The Grand
Challenge Paper at the IFIP Working Conference on Verified Software: Theories, Tools and
Experiments (VSTTE), 10-13 October 2005 Zurich http://vstte.ethz.ch/.

7. C.A.R. Hoare. The verifying compiler: A grand challenge for computer research.Journal of
the ACM, 50(1):63–69, 2003.

8. M. Joseph. Formal techniques in large scale software engineering. Keynote at IFIP Working
Conference on Verified Software: Theories, Tools and Experiments (VSTTE), 10-13 October
2005 Zurich http://vstte.ethz.ch/.

9. P. Kruchten.The Rational Unified Process – An Introduction (2nd Edition). Addison-Wesly,
2000.

10. C. Larman.Applying UML and Patterns. Prentice-Hall International, 2001.
11. X. Li, Z. Liu, J. He, and Q. Long. Generating prototypes from a UML model of re-

quirements. InInternational Conference on Distributed Computing and Internet Technol-
ogy(ICDIT2004), Lecture Notes in Computer Science, Bhubaneswar, India, 2004. Springer.

12. Z. Liu, J. He, and X. Li. Contract-oriented development of component systems. InProceed-
ings of IFIP WCC-TCS2004, pages 349–366, Toulouse, France, 2004. Kulwer Academic
Publishers.

13. Z. Liu, J. He, and X. Li. rCOS: A refinement calculus for object systems. InProc. FMCO
2004, LNCS 3657, pages 183–221. Springer, 2005.

14. Z. Liu, J. He, X. Li, and Y. Chen. A relational model for object-oriented requirement analysis
in UML. In Proc. of International Conference on Formal Engineering Methods, Lecture
Notes in Computer Science, Singapore, November 2003. Springer.

15. Z. Liu, A.P. Ravn, and X. Li. Unifying proof methodologies of Duration Calculus and Linear
Temporal Logic.Formal Aspects of Computing, 16(2), 2004.

16. Q. Long, Z. Liu, J. He, and X. Li. Consistent code generation from uml models. InAustralia
Conference on Software Engineering (ASWEC). IEEE Computer Scienty Press, 2005.

17. Q. Long, Z. Qiu, Z. Liu, L. Shao, and J. He. POST: A case study for an incremental devel-
opment in rCOS. In H.V. Dang and M. Wirsing, editors,Proc. of ICTAC05, International
Colloquium on Theoretical Aspects of Computing, Lecture Notes in Computer Science 3722.
Springer, 2005.

18. S.J. Mellor and M.J. Valcer.Executable UML: a foundation for model-driven architecture.
Addison-Wesley, 2002.

19. OMG. The Unified Modeling Language (UML) Specification - Version 1.4, September
2001. Joint submission to the Object Management Group (OMG)http://www.omg.
org/technology/uml/index.htm .

20. A. Pnueli. Looking ahead. Workshop on The Verification Grand Challenge February 21–23,
2005 SRI International, Menlo Park, CA.

21. J. Rushby. Integrating verification components. Keynote at IFIP Working Conference on
Verified Software: Theories, Tools and Experiments (VSTTE), 10-13 October 2005 Zurich
http://vstte.ethz.ch/.

22. U. Shrotri, P. Bhaduri, and R. Venkatesh. Model checking visual specification of require-
ments. InInternational Conference on Software Engineering and Formal Methods (SEFM
2003), page 202209, Brisbane, Australia, 3003. IEEE Computer Society Press.

