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Abstract. Consider an object-oriented model with a class diagram, and a set of
object sequence diagrams, each representing the design of object interactions for
a use case. This article discusses how such an OO design model can be automat-
ically transformed into a component-based model for the purpose of reusability,
maintenance, and more importantly, distributed and independent deployment. We
present the design and implementation of a tool that transforms an object-oriented
model to a component-based model, which are both formally defined in the rCOS
method of model driven design of component-based software, in an interactive,
stepwise manner. The transformation is designed using QVT Relations and im-
plemented as part of the rCOS CASE tool.
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1 Introduction

In the rCOS [3, 12] model-driven design of component-based software, the model of
the requirements is represented in a component-based architecture. Each use case is
modeled as a component in the requirements model. The interface of the component
provides methods through which the actors of the use case interact with the compo-
nent. The functionality of each method m() of the interface is specified by pre- and
post-conditions m(){pre ` post}, and the order of the interactions (called the use-case
protocol) between the actors and the component as a set of traces of method invocations,
graphically represented by a UML sequence diagram. One component may have a re-
quired interface through which it uses the provided methods of other components. The
linkages (dependency) between components forms a static component-based structure
modeled as a component diagram. The types of the variables of the components, i.e. its
objects and data, are modeled by a UML class diagram, that has a textual counterpart
specification in rCOS. Therefore the model of the component-based architecture of the
requirements consists of a model of the component-based static structure (graphically
represented as a UML component diagram), a class model (graphically a class dia-
gram), an interaction protocol (graphically a sequence diagram for each component),
and a specification of the data functionality of the interface methods.

? On leave from Guizhou Academy of Sciences, Guizhou, China.



2 Dan Li, Xiaoshan Li, Zhiming Liu, and Volker Stolz

In the design, the functionality specification of the interface methods of each com-
ponent is then refined by decomposition and assignment of responsibilities to objects
of the component, obtaining an OO model of object interactions represented by an ob-
ject sequence diagram. This object sequence diagram refines the sequence diagram of
the component (use case). For the purpose of reusability, maintenance, and more im-
portantly, distributed and independent deployment (third party composition) [19], the
OO model is abstracted to a model of interactions of components, that is graphically
represented as a component sequence diagram defined in the UML profile for rCOS.

This paper presents the design and implementation of a tool for the transforma-
tion of a model of object interaction to a model of component interaction. The tool
requires user interactions. In each step of interaction, the users decide which objects
will be turned into a component, then the tool automatically performs the model trans-
formation. However, we need to define the criteria for the selection of objects to form
a component as the validity conditions of the selection. The tool automatically checks
the validity, and the transformation of the sequence diagram is carried out if selection
passes the check. The transformation also automatically and consistently transform the
static structure and reactive behavior (state machine diagram), obtaining a model of
component-based design architecture, that correctly refines the component-based ar-
chitecture of the requirements.

Through a finite number of transformation steps with valid selection on the OO
model of each component in the model of requirements, the object sequence diagram
is transformed to a component sequence diagram in which the lifelines represent only
components. Also, a complete component diagram is generated with the interface proto-
cols as sets of traces and the reactive behavior modeled by state machine diagrams of the
components. The transformations of the OO design of all components thus, one by one,
obtain a correct refinement of the model of requirements architecture to a component-
based design architecture in which each component in the requirements is a composition
of a number of components.

The semantic correctness of the transformation and consistency among the different
resulting views (diagrams) can be reasoned about within the rCOS framework. The tool
is not only applicable in a top-down design process. If object-interaction models can be
obtained from packages (modules) of OO programs, the tool can be used to transform
OO programs to components, at least on the modeling level. An extension would be
required to transform existing source code within a transformation step.

The paper is organized as follows. We start in Section 2 to discuss the concepts
of rCOS model to facilitate the definition of the transformation. We present the major
principles of the transformation in Section 3, and describe the implementation of the
transformation tool. Section 4 shows how the transformation be applied to a case study.
Our conclusions and the related work of this paper are discussed in Section 5.

2 UML Profile of rCOS Models

rCOS provides a notation and an integrated semantic theory to support separation of
concerns and allows us to factor a system model into models of different viewpoints [3,
12]. The formal semantics and refinement calculus developed based on it are needed for
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the development and use of tools for model verification and transformations. The aim of
the development of rCOS tools is to support a component-based software development
process that is driven by automatic model transformations. The model transformations
implement semantic correctness preserving refinement relations between models at dif-
ferent level of abstraction. It is often the case that the models before and/or after a
transformation need to be verified or analyzed, and in that case verification and analysis
tools are invoked. The rCOS project focuses on tool development for model transfor-
mations, and this paper in particular is about the transformation from object-oriented
design models to component-based design models.

UML Profile [15] is a mechanism to support extending and customizing standard
UML. This mechanism is carried out by defining stereotypes, tagged values and ad-
ditional constraints. Through such a UML profile, rCOS models can be supported by
standard UML infrastructure and CASE tools, minimizing the effort to develop a new
tool, and meeting the requirements for standardization and interoperability.

The rCOS development process involves the following models:

1. The requirements model includes a component diagram, a conceptual class dia-
gram in which classes do not have methods, and a set of sequence diagrams. They
all have their formal rCOS textual counter parts. Also, each method of the provided
interface has a pre- and post-condition specification. The sequence diagrams are
component sequence diagrams in which the lifelines are components, and interac-
tions are inter-component interactions.

2. Each component in the requirements model go through an OO design phase and its
sequence diagram is refined into an object sequence diagram in which each lifeline
is an object, and interactions are intra-object interactions within the component.
The conceptual class diagram in the requirements model is also refined into a de-
sign class diagram in which methods for the intra-object interactions of the object
sequence diagrams are assigned to the classes.

3. Then each OO sequence diagram of a component in the previous stage is abstracted
to a component sequence diagram; thus the component is decomposed into a com-
position of a number of components. After the abstraction transformation is done
for all components of the requirements model, the component-diagram of the re-
quirements is refined to another component diagram with more hierarchical com-
ponents being introduced.

Note that the transformation described here is not limited to rCOS models—rather,
rCOS just prescribes the wellformedness of the input models, and the semantics of the
communication model that will be preserved through the transformation. We refer to
our publications [3,12] for detailed discussions. The rCOS class model is rather a UML
standard class model. In the rest of this section, we define the metamodels of rCOS
components and sequence diagrams.

2.1 The metamodel of rCOS components

The component model is an essential part of rCOS. Its metamodel is defined by a UML
profile diagram shown in Fig. 1, in where an element in the light yellow box represents a
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Fig. 1. The metamodel of rCOS component model

stereotype of rCOS, and the ones in the dark yellow boxes are standard UML metamodel
elements. In the metamodel, an rCOS component model consists of:

– ContractInterface: Extended from UML Interface, a contract interface provides an
interaction point for a component, and defines the static portion of a rCOS interface
contract. DesignOperations specify the static functionality of an operation. It is
defined as an rCOS design in the form of pre ` post . An rCOS Field, which is
not shown in the figure explicitly, is implemented as a UML Property of a contract
interface. (For ease of layout of the diagram, the same ContractInterface element
appears twice in Fig. 1.)

– Protocol: A contract interface has a Protocol that specifies the traces of invocations
to the Operations of the Interface of the contract interface. A protocol contains a
StateMachine, a Collaboration and a set of CallEvents. A call event is an invocation
of an operation of the contract interface, resulting in the execution of the called
operation. Especially, here a Collaboration owns a UML Interaction defined as a
RCOSSequenceDiagram, whose metamodel is given in the next subsection.

– RCOSComponent: There are two kinds of components in rCOS, ServiceCom-
ponents and ProcessComponents. A service component, for short a component
here, provides services to the environments through its provided interfaces, and re-
quires services from other components through it required interfaces. rCOS defines
separate contracts for the provided interface and required interface of a compo-
nent. Thus, the metamodel defines one provided contract interface, and optionally
a required contract interface.
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– We realize the connection between a component and its provided interface using
a UML InterfaceRealization. A UML Usage, a specialized Dependency relation-
ship, is used to link a required interface to its owner component. In addition, we
define a stereotype Composition, which is also an extension of UML dependency,
to plug a provided interface of a component to a required interface of another com-
ponent (here, rCOS component operations do not translate naturally to UML com-
ponent composition). Furthermore, a component may be realized by a set of classes
through ComponentRealizations.

2.2 Metamodel of rCOS sequence diagrams
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Fig. 2. Metamodel of rCOS sequence diagram

Fig. 2 shows the metamodel of rCOS sequence diagrams. It conforms to the interac-
tion metamodel provided by OMG [15]. In the metamodel, a UML Interaction contains
a number of Lifelines, and a set of Messages.

A message specifies a communication from a sender lifeline to a receiver lifeline.
It has a sendEvent and receiveEvent which express the MessageOccurrences along the
lifelines, appearing in pairs. A message occurrence represents the synchronous invoca-
tion of an operation. The BehaviorExecution (green segment of a lifeline in the later
diagrams) represents the duration of an operation, and plays no role in our models (yet
it is an artefact from the graphical editor).

rCOS has two kinds of sequence diagrams, object sequence diagrams and compo-
nent sequence diagrams. A lifeline may represent an actor, an object (of a particular
class), or a component. When a lifeline represents an object or a component, we call it
object lifeline or component lifeline. A CombinedFragment represents a nested block
that covers lifelines and their messages to express flow of control, such as an alternative
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block (alt) or an iteration block (loop), with their attached boolean guard conditions.
Sequence diagrams here do not express recursion.

The two kinds of sequence diagrams are needed to combine both OO design and
component-based design in rCOS. The abstract stereotype RCOSSequenceDiagram
has subtypes of ObjectSequenceDiagram and ComponentSequenceDiagram, that
satisfy the following well-formed conditions, respectively.

1. ObjectSequenceDiagram:
– There is one lifeline representing an Actor, and all other lifelines represent

objects or components.
– Messages are synchronous calls to an operation provided by the type of the

target lifeline, or a constructor/create messages.
– A message flow starts with a message from the actor to a single component,

from components to components or objects, or from objects to objects, but
never from objects to components.

Therefore, and object-sequence diagram can contain both component and object
lifelines, and thus also serves as an intermediate data structure for the transforma-
tions, until all objects have been transformed.

2. ComponentSequenceDiagram:
– One lifeline represents an Actor, and all other lifelines represent components.
– All receive events occur on the lifelines representing components.
– Each message is a method call to an operation defined in the provided interfaces

of the component represented by the target lifeline.
– There should be a composition relation between two component if there is a

message between them in a sequence diagram.
– No create messages exists in the diagram.

The static semantics, i.e. well-formedness of the rCOS sequence diagrams, including
the above conditions, is defined by a set of OCL rules in the rCOS CASE tool. These
rules are used to automatically check the well-formedness conditions and the structural
consistency of the UML model: for example, the object creation event on a lifeline must
precede all other events on the lifeline, and a fragment must include both the sender and
the receiver of any event occurring in the fragment.

rCOS also has a dynamic model represented by state diagrams. The metamodel
of state diagrams is largely the same as the labelled transition systems provided by
standard UML state diagrams, where guarded transitions are again linked to interface
methods. We leave the metamodel definition out of this paper.

3 Transformation from Object- to Component Sequence Diagrams

We now describe the interactive transformations from an object sequence diagram to a
component sequence diagram. The transformations start with an object sequence dia-
gram and a design class diagram. Through a number of steps of interactions between the
user and the tool, they generate a component diagram, a component sequence diagram,
and the protocols of the provided interface and required interface of each component in
the component diagram. In each step, the user selects a set of object lifelines that she
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intends to make into a component. The tool will check the validity conditions for this
set to form a component. If the selection passes the check, the tool combines the se-
lected object lifelines into a component lifeline, adding a component to the component
diagram, and generates the protocols for the component. We describe the principles of
the selection and the validity of selection, as well as the generation of a component from
the selected lifelines below. As the UML metamodel especially for sequence diagrams
is quite verbose as shown in the previous section, we use an alternate, more concise
representation here (at the cost of not having established the formal correspondence
between the two levels).

3.1 Selection of object lifelines

First, one object lifeline is designated as the controller object of the selection by the
user. The principles for picking such a control object not only depend on checkable
conditions of the object but also on design considerations of reusability, maintainabil-
ity, and organization of the system being modeled. The major checkable condition is
that this object should be a permanent object in the sequence diagram. This means it
should have existed before the start of the execution of the sequence diagram (speci-
fied by the precondition of the first message), and it will not be destroyed during the
execution (rCOS does not have destructor methods). This also includes software ob-
jects representing the control of physical devices, such as barcode readers, controllers
of printers, lights, and operating system objects, such as the system clock.

Then the selection of further objects should be made by the user with consideration
of the following conditions and principles:

1. any object lifeline that is a receive end of a creation event from a lifeline that is
already included in the selection must be selected,

2. the objects in the selection must be strongly connected, i.e. for any lifeline ` in the
selection there is at least one message path from the controller object to `,

3. consider low coupling and high cohesion principle that the selected lifelines have
more intensive interaction with each other than with lifelines outside the selection.

4. lifelines that represent objects which will be deployed on different nodes of a dis-
tributed system should not be included in the same selection.

The first two conditions are must condition and can be easily checked, as discussed
in the next sub-section. The third condition is a desirable principle, and the fourth is a
platform dependent condition. The latter two can never lead to an inconsistent model,
but to a model that does not capture the intentions correctly, and a detailed discussion
of them is out the scope of the paper.

3.2 Validating the lifeline selection

Given an object sequence diagram D, we define some notations for the describing
the validation of a selection. We use D.lines to denote the set of all lifelines of D,
D.messages the set of messages, and a message is represented by m[`i, `j ] as an invo-
cation of m of `j from `i. Create-messages indicate constructor invocations.
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Let D.selection ⊆ D.lines be a selection, and `c the designated controller object,
and define D.rest = D.lines−D.selection. Further, we define

IntraM = {m[`i, `j ] : `i, `j ∈ D.selection} Messages among
the selected lifelines

InM = {m[`i, `j ] : `i ∈ D.rest ∧ `j ∈ D.selection} Incoming messages
to selected lifelines

OutM = {m[`i, `j ] : `i ∈ D.selection ∧ `j ∈ D.rest} Outgoing messages
from selected lifelines

OutsideM = {m[`i, `j ] : `i, `j ∈ D.rest} Messages outside
the selected lifelines

A lifeline ` in sequence diagram D can be either an object lifeline, denoted by type(`) =
Class, or a component lifeline, denoted by type(`) = Component. Now we define the
conditions below for checking the validity of a selection.

1. All lifelines selected must be object lifelines

∀` ∈ D.selection · type(`) = Class

2. The controller object `c must be a permanent object. This is done by checking it is
not on the receive end of an object creation message.

∀` ∈ D.lines · (create[`, `c] 6∈ D.messages)

3. The transformation starts with those lifelines that directly interact with the ac-
tor, then those directly receiving message from the lifelines that have been made
into component lifelines. Therefore any incoming message to the current selection
should be from either the actor or a component lifeline

∀m[`i, `j ] ∈ InM · (type(`i) = Actor ∨ type(`i) = Component)

4. Creation messages can only be sent between lifelines inside the selection or be-
tween objects outside the selection

∀`i, `j ∈ D.lines · (create[`i, `j ] ∈ IntraM ∨ create[`i, `j ] ∈ OutsideM)

5. Any incoming message to the selection is received either by the controller object
or by a lifeline which has a direct path of message from the controller object

∀m[`i, `j ] ∈ InM · (`j = `c ∨ ∃m[`c, `j ] ∈ IntraM)

6. The lifelines of the selection must be strongly connected, meaning that for any
selected lifeline `, there must be a path of messages from the controller object

m[`c, `1],m1[`1, `2], . . . ,mi[`i, `]

Notice that Conditions 4&6 are closure properties required of the section, and that the
initial object-sequence diagram of a use case in rCOS always has a use case controller
object that satisfies Conditions 2,3&5. Using induction on the number of lifelines, these
conditions all together ensures existence of a valid selection for any well-formed se-
quence diagram that contains object lifelines. Every OO sequence diagram can be trans-
lated into the trivial component sequence diagram which internalises all object lifelines
into the controller.
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3.3 Generating a component from selected lifelines

If the selection passes the validity checking, the transformation will be executed to
generate the target models, otherwise an error message is fed back to the tool user. The
transformation is specified in the QVT relational notation (see Section 3.4). For the
understandability to the formal specification community, we describe the specification
in terms of the relation between the source model and the target model, similar to the
pre- and postcondition specification of a program.

Given a source sequence diagram D, that is an object sequence diagram, and a valid
selection D.selection, let D’ denote the target sequence diagram after one step of the
transformation. For a lifeline ` in D (or D’), we use type(`,D) to denote the type of
the lifeline ` in D (respectively type(`,D’) in D’). For a component lifeline ` in D (or
D’), pIF denotes the provided interface of the component that ` represents, and rIF the
required interface. We now describe the relation between D and D’ as the conjunction
of the following predicates.

1. The controller object `c in D is changed to a component lifeline in D’

`c ∈ D.selection ∧ type(`c, D) = Class
∧ `c ∈ D′.lines ∧ type(`c, D′) = Component

2. An incoming message to the selection in D becomes an invocation to the interface
methods of `c in D’

∀m[`i, `j ] ∈ InM · (m[`i, `c] ∈ D’.messages ∧m ∈ pIF(`c))

Notice that the order of the messages and fragments are not to be changed.
3. All the intra-object interactions in the selection in D are collapsed, more precisely

hidden inside the component `c

∀m[`i, `j ] ∈ IntraM · (`i, `j 6∈ D’.lines ∧m[`i, `j ] 6∈ D’.messages)

4. All the outgoing messages from the selection become sending messages from the
component that `c represents in D′, with the order and fragments preserved, and
they become the required methods of the component

∀m[`i, `j ] ∈ OutM · (m[`c, `j ] ∈ D’.messages ∧m ∈ rIF(`c))

5. No lifelines and messages outside the selection are changed

∀m[`i, `j ] ∈ OutsideM · (m[`i, `j ] ∈ D’.messages)

From the definition of the resulting sequence diagram D’, its static counterparts, the
components can be defined. The change for the component diagram can be specified in
a similar way. The protocols of the provided interface pIF(`c) and the required interface
rIF(`c) of the newly constructed component `c in D’ will be generated.

Next, we give an intuition into how the relations defined above can be directly put
to use through QVT-Relations.
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3.4 Implementation of the transformation

The object sequence diagram to component sequence diagram transformation is imple-
mented through the QVT Relations language using the QVTR-XSLT tool we recently
developed [10]. The MOF 2.0 Query/View/Transformation (QVT) [14] is a model trans-
formation standard proposed by OMG. QVT has a hybrid declarative/imperative nature.
In its declarative language, called QVT Relations (QVT-R), a transformation is defined
as a set of relations between the elements of source metamodels and target metamodels.
QVT-R has both textual and graphical notations, and the graphical notation provides a
concise, intuitive way to specify transformations.

The QVTR-XSLT tool supports the graphical notation of QVT-R. It provides a
graphical editor in which a transformation can be specified using the graphical syn-
tax, and a code generator that automatically generates executable XSLT [21] programs
for the transformation. The tool supports in-place transformations so we can focus on
defining rules only for the parts of a model we want to change. Multiple input and
output models are also supported in the tool.

<<Relation>>

ObjToComLifeline

{when=LifelineToCom(lfl,com);}

<<Domain>>

seq : Interaction

com : Component

name = "propnm"

xmi:id = "propid"

 : Property

name = "propnm"

xmi:id = "propid"

 : Property

<<Domain>>

tseq : Interaction

name = "lflnm"

xmi:id = "lflid"

 : Lifeline

name = "lflnm"

xmi:id = "lflid"

lfl : Lifeline

lifeline

ownedAttribute

represents

represents

lifeline

type

Fig. 3. An example of a QVTR relation

In the graphical notation, a relation defines how two object diagrams, called domain
patterns, relate to each other. Fig. 3 illustrates an example QVT relation in graphical
notation which specifies the generation of a component lifeline from an object lifeline.
Starting from the root object seq tagged with label �Domain�, the source domain
pattern (left part) of the relation consists of a Lifeline lfl with its representing Property
under the seq. The target domain pattern (right part) has a similar structure. The patterns
are used for structural matching in the source- and target model, respectively.

When the relation is executed, the source domain pattern is searched in the source
model. If a match is found, the lifeline and the property are bound to instances of source
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model elements. The target domain pattern of the relation acts as a template to create
objects and links in the target model. In this example, the target domain pattern creates a
lifeline object and a property object. Both objects own a name and an xmi:id attributes.
These two attributes get values from the corresponding model instances bound by the
source domain pattern. Moreover, the property object of the target model has now the
association type set to the component com, which is bound (and possible created) by
invoking relation LifelineToCom in the when clause. These clauses specify additional
matching conditions and can either refer to other relations, or OCL expressions.

At the implementation level, a complete model consists of a UML model and a
DI (diagram interchange) [13] model. The former contains the abstract syntax infor-
mation that is described in Section 2, and it is stored in Eclipse Modeling Frame-
work (EMF) XMI format, which is supported by many UML CASE tools. The latter
contains the layout information in the form of UML 2.0 Diagram Interchange stan-
dard [13]. In fact, these two models are technically separate models and saved in differ-
ent XML files. When the UML model is modified by the transformation, the DI model
must be synchronously updated in order to correctly display the corresponding dia-
grams. The changes to the DI model are also specified using QVT-R, and transformed
by the QVTR-XSLT tool. The resulting diagrams for the case study are the result of
those transformations after minimal visual cleanup. The transformation is specified by
three transformation models. In total, they contain 105 relations, and 45 functions and
queries. About 6300 lines of XSLT code are generated for the implementation of the
transformation.

To support the rCOS methodology, we have developed a CASE tool [4] with graph-
ical interfaces for designing use cases, classes, component-, sequence- and state dia-
grams, and the syntactic consistency among these views can be checked. The tool is
implemented as an Eclipse-plugin on top of the Eclipse Graphical Modelling Frame-
work and TOPCASED [16]. We have integrated the XSLT programs of the transfor-
mation into the user interface of the tool. A user can select a group of lifelines from
the interface, and then the XSLT transformation programs are invoked by the tool with
these lifelines as parameters. If these lifelines are allowed to become a component,
the transformation is executed and the user interface will be automatically refreshed to
show the transformation results.

4 Case Study

The Common Component Modelling Example (CoCoME) [3, 17] describes a trading
system that is typically used in supermarkets. This case study deals with the various
business processes, including processing sales at a cash desk, handling payments, and
updating the inventory. The system maintains a catalog of product items, as well as the
amount of each item available. It also keeps the historical records of sales; each of them
consists of a number of line items, determined by the product item and the amount sold.

At the end of the object-oriented design stage, we get a design model which con-
tains a set of design class diagrams and object sequence diagrams. Fig. 4 shows a sim-
plified version of the design class diagram for the CoCoME example, where the class
CashDesk is the control class. Fig. 5 depicts the object sequence diagram of use case
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Fig. 4. The design class model of CoCoME

Fig. 5. The object sequence diagram of usecase process sale

process sale, which describes the check out process: a customer takes the products she
wants to buy to a cash desk, the cashier records each product item, and finally the
customer makes the payment. Applying the transformations discussed in the previous
sections, we transform the object sequence diagram into an rCOS component sequence
diagram in a stepwise, incremental manner. Meanwhile the object model automatically
evolves to a component-based model.
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The object sequence diagram of Fig. 5 consists of seven lifelines. The leftmost life-
line is the Actor, and followed by lifelines L CashDesk, L Sale, L LineItem, L Store,
L Item and L Pay, representing objects of class CashDesk, Sale, LineItem, Store, Item
and Payment, respectively. Based on our interpretation of the case study, we decide to
apply the transformation three times.

The first step deals with the lifeline L CashDesk, which is directly interacting with
the actor. Since lifeline L Sale is created by L CashDesk, and L LineItem is created by
L Sale, they have to be in the same component. As shown in Fig. 6, we select these three
lifelines from the sequence diagram, set L CashDesk as the controller object (main life-
line in the figure), and transform them into a service component COM L CashDesk. The
component has a provided interface ConInter L CashDesk and a required interface RIn-
ter L CashDesk. The resulting sequence diagram is shown in Fig. 8, in which lifeline
L CashDesk now represents the new component, and lifelines L Sale and L LineItem,
along with their internal messages, are removed from the diagram.

Fig. 6. Select lifelines Fig. 7. Validation error message

As we mentioned before, the tool will check whether the selected lifelines can be
transformed to a component, and provides an error message if the selection is not valid.
For instance, if we choose lifelines L Sale, L Store and L Item to become a component,
the tool will display an error message, as shown in Fig. 7.

For the second transformation, we select the lifelines L Store and L Item from the
sequence diagram of Fig. 8, and indicate L Store as the controller object. Since class
Store is composed with class Item, the transformation is allowed, and the two lifelines
are transformed into a service component COM L Store.

As the result of the second transformation, the lifeline L Store now represents the
component COM L Store. Accordingly, the component diagram is changed, where the
provided interface ConInter L Store is plugged to the required interface RInter L Cash
Desk (we only show the final resulting component diagram later in Fig. 11).

For each generated component, we also generate an rCOS protocol, which consists
of a sequence diagram and a state diagram, for its provided interface. The protocol
for component COM L Store is shown in Figs. 9 & 10. The left part of the sequence
diagram in Fig. 9 specifies the interactions of the component with its environment (rep-
resented by a fresh actor), and the right part defines the interactions between the com-
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Fig. 8. The sequence diagram after the first transformation

ponent and its internal objects. We notice that a message originally sent from a non-
selected lifeline and received by another selected lifeline, such as the getPrice message
in Fig. 5, now becomes two messages. The first getPrice message is received by the
component COM L Store, and then delegated to the original receiving lifeline L Item
using the second getPrice message.

Fig. 9. Sequence diagram of COM L Store Fig. 10. State diagram of COM L Store

In the third transformation, we turn L Pay, the only object lifeline left, into compo-
nent COM L Pay. Thus we get the final component diagram shown in Fig. 11, which
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Fig. 11. Final component diagram of the CoCoME example

depicts the relationships among the three components of the model. We obtain the final
component sequence diagram, in which all lifelines represent components, except the
one representing the actor (see Fig. 12), fulfilling the structural well-formedness rules
of component sequence models as discussed in Section 2.

Through applying the object sequence diagram to component sequence diagram
transformation three times, we have successfully developed the design model of Co-
CoME into a component model. The component model includes component sequence
diagrams and component diagrams to define the relationship of components. Each com-
ponent has its provided/required interfaces, as well as a protocol, that consists of a se-
quence diagram and a state diagram, to define the behaviors of the component.

Fig. 12. Final rCOS component sequence diagram for usecase process sale
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5 Conclusion

A major research objective of the rCOS method is to improve the scalability of seman-
tic correctness preserving refinement between models in model-driven software engi-
neering. The rCOS method promotes the idea that component-based software design
is driven by model transformations in the front end, and verification and analysis are
integrated through model transformations.

As nearly all existing component-based technologies are realized in object-oriented
technologies, most design processes start with an OO development process and then at
the end of the process an OO design is directly implemented by using a component-
based technology, such .COM or .NET. It is often the case that an OO program is devel-
oped first and then it is transformed into component software. Our approach improve
this practice by allowing a component-based model of the requirements, and a seamless
combination of OO design and component-based design for each components in the re-
quirements. The combination is supported by the interactive transformations from OO
design to component-based design presented in this paper, in a stepwise and composi-
tional manner. This allows the object-oriented and component-based design patterns to
be used in the OO design and captured in the specification of the transformation.

In the tool implementation, the transformation is specified in a subset of the graph-
ical QVT Relations notation. The correct implementation of the interactive transforma-
tion requires the definition of a UML profile of the abstract syntax of the rCOS model
that is presented in the paper. The QVT specification of the transformation is automati-
cally transformed to an executable XSLT program, that can be run through an Eclipse-
plugin. The presented technique and tool can be combined with reverse engineering
techniques for transformation of OO programs into component-based programs.

5.1 Related work

As a natural step of model driven development, object-oriented models are further
evolved to component-based models to get the benefits of reusability, maintenance,
as well as distributed and independent deployment. Surveys of approaches and tech-
niques for identification reusable components from object-oriented models can be found
in [2,20]. Based on the principle of “high cohesion and low coupling”, researchers try to
cluster classes into components. The basic ideas are: calculate the strength of semantics
dependencies between classes and transform them into the form of weighted directional
graph, then cluster the graph using graph clustering or matrix analysis techniques [20].
Using clustering analysis, components with high cohesion and low coupling are ex-
pected to be obtained in order to reduce composition cost.

Particularly, since use cases are applied to describe the functionality of the system,
the work of [18] focuses on applying various clustering methods to cluster use cases
into several components. In [6], the static and dynamic relationships between classes
are used for clustering related classes in components, where static relationship mea-
sures the relationship strength, and dynamic relationship measures the frequency of
message exchange at runtime. COMO [9] proposed a method which measures inter-
class relationships in terms of create, retrieve, update and delete (CRUD) operations
of model elements. It uses dynamic coupling metric between objects to measure the
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potential number of messages exchanged. All above approaches are based on clustering
algorithms, which makes them much different from our approach, where transforma-
tions are applied at the design stage by a human.

Identifying reusable components from object-oriented models was considered to be
one of the most difficult tasks in the software development process [6]. Most exist-
ing approaches just provide general guidelines for component identification. They lack
more precise criteria and methods [5]. Because of the complexity of source information
and the component model itself, it is not advisable for component designers to man-
ually develop component-based models from object-oriented models [20]. Alas, there
are almost no (semi)-automatic tools to help designers in the development process [18].
The work of the paper makes a useful attempt to address this problem, and provide a
tool supporting.

Sequence diagrams have of course already been used informally in UML-based
modeling since their conception. Recently, [7] presents a rigorously defined variant
called “Life Sequence Charts” with tool support to use them for system design. The
focus there is however not on component modeling, but giving a formal semantics to
sequence charts for synthesis.

In [3], we have studied this top-down development process, carried out by hand,
for the CoCoME case study. Our process is motivated by an industrial CASE tool,
MASTERCRAFT [11]. There, the focus is on the design and refinement of the relational
method specifications using the rCOS language [8, 22].

5.2 Future work

There are still many challenges in the automation of model transformations, especially
on the level of method specifications, such as applying the expert pattern in the object-
oriented design stage. It is not enough to only provide a library of transformations, but
more importantly, the tool should provide guiding information on which rule is to be
used [12]. Since our methodology (unsurprisingly) coincides with textbook-approaches
to design of OO- and component software, we hope that the tool can also become a
foundation for education in software engineering. It should guide the user through the
different stages with recommendations, e.g. where detail should be added to the model,
or where refinement is necessary. Based on metrics, the tool could also propose concrete
transformation parameters. It is also difficult to support consistent and correct reuse of
existing components when designing a new component. We will continue working in
this direction to overcome these challenges.

The rCOS Modeler that implements the transformations discussed here can be
downloaded together with examples from http://rcos.iist.unu.edu.
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