
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343353942

Software Abstractions and Human-Cyber-Physical Systems Architecture

Modelling

Chapter · August 2020

DOI: 10.1007/978-3-030-55089-9_5

CITATIONS

3
READS

184

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Encryption View project

Museum Informatics View project

Zhiming Liu - 刘志明

Northwestern Polytechnical University

215 PUBLICATIONS 2,264 CITATIONS

SEE PROFILE

Jonathan Peter Bowen

London South Bank University

501 PUBLICATIONS 6,588 CITATIONS

SEE PROFILE

Bo Liu

Southwest University in Chongqing

15 PUBLICATIONS 232 CITATIONS

SEE PROFILE

Shmuel Tyszberowicz

Tel Aviv University

60 PUBLICATIONS 352 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jonathan Peter Bowen on 28 February 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/343353942_Software_Abstractions_and_Human-Cyber-Physical_Systems_Architecture_Modelling?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/343353942_Software_Abstractions_and_Human-Cyber-Physical_Systems_Architecture_Modelling?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Encryption-13?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Museum-Informatics?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiming-Liu-liuzhiming?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiming-Liu-liuzhiming?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Northwestern-Polytechnical-University?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiming-Liu-liuzhiming?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-Bowen-2?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-Bowen-2?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/London_South_Bank_University?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-Bowen-2?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bo-Liu-77?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bo-Liu-77?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southwest-University-in-Chongqing?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bo-Liu-77?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shmuel-Tyszberowicz?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shmuel-Tyszberowicz?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tel_Aviv_University?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shmuel-Tyszberowicz?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-Bowen-2?enrichId=rgreq-94c17252e5275f6a40269fc3fa7f10c5-XXX&enrichSource=Y292ZXJQYWdlOzM0MzM1Mzk0MjtBUzo5OTYzMTI2MjMzNTM4NTdAMTYxNDU1MDg0ODY3Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Software Abstractions and
Human-Cyber-Physical Systems

Architecture Modelling

Zhiming Liu1[0000−0001−9771−3071], Jonathan P. Bowen1,2[0000−0002−8748−6140],
Bo Liu1[0000−0002−9026−2543], Shmuel Tyszberowicz1,3[0000−0003−4937−8138], and

Tingting Zhang1[0000−0003−4578−274X]

1 Southwest University
RISE – Centre for Research and Innovation in Software Engineering

Chongqing, China
zhimingliu88@swu.edu.cn

2 London South Bank University
School of Engineering

London, United Kingdom
jonathan.bowen@lsbu.ac.uk

3 Afeka Academic College of Engineering
Tel Aviv, Israel

tyshbe@tau.ac.il

Abstract. It is over fifty years since the subject discipline of software
engineering and more than forty years from when the area of formal
methods have been established. During this period, the academic com-
munity has accomplished extensive research in foundations and methods
of software engineering, as well as developing and teaching a large body
of software engineering knowledge and techniques. At the same time, the
IT industry has produced larger, more complex, and better (in many as-
pects) software systems. Yet, these large projects are largely developed
using a trial and error approach, without systematic use of the devel-
oped software engineering methods and tools. The cost of these projects
is high, the percentage of project delay and cancellation is significant,
and the dependability of the systems is low in many requirements. The
most serious problem of this ad hoc development approach is that the
development process is not repeatable and the systems developed are
not well evolvable. This problem is particularly crucial for the design
and implementation of modern networked distributed software systems,
known as Human-Cyber-Physical Systems (HCPS).

In this tutorial paper, we reflect the development of software engineer-
ing through software abstractions and show that these abstractions are
integral in the notion of software system architectures. We discuss the
importance of architecture modelling and argue for a seamless combina-
tion of informal and formal activities in the modelling and design of the
architecture. A point that we make is that it is important to engineer sys-
tems using formal methods in relation to the definition and management
of development processes, and how a model of the software architecture,

with rich semantics and refinement relations, plays an important role in
this process. We consider development of two typical types of software
components and use examples to discuss the traditional processes for
their domain modelling and software requirements modelling. We then
propose to combine these modelling approaches and this naturally leads
to a unified modelling process for HCPS architecture modelling, design,
and evolution. Based on the unified processes, we outline a framework in
engineering formal methods for HCPS modelling, including the mapping
of the system architecture to the technology architecture and organiza-
tion of the development team with the expertise required, and decide the
appropriate formal methods and tools to be used.

Keywords: Formal methods · Human-Computer-Physical System · Ab-
straction · Architecture modelling · Conceptual integrity · System evo-
lution.

1 Introduction

Although the term was used earlier, the notion of “Software Engineering” with
its intention and extension, was first proposed at the world’s first conference
on software engineering that was held in 1968, sponsored and facilitated by
NATO [75]. The challenges which it intended to address were characterized by
“software crisis”. Symptoms of the crisis had been that large software projects
resulted in a high percentage of cancellations, late deliveries, over-spending of
the budget, and systems that often failed to meet critical requirements. The
cause of the crisis was regarded to be due to the growing power of computing
machines [30], and as a consequence increase in software demand, complexity,
and challenges, yet without changing the methods and tools being used.

From the viewpoint with respect to software construction, however, the fun-
damental problem of the software crisis was that it lacked systematic engineer-
ing methods for the production of computer programs. Unlike well-established
branches of engineering, where the construction of a complex product was un-
dertaken using well defined engineering processes employing proper methods and
tools, software production was carried in an ad hoc manner, without the system-
atic use of standard methods and tools. Here, by methods and tools, we mean
approaches that have been developed based on scientific and sound mathematical
theories for modelling, validation, and verification. An improvised development
process with best-effort methods is more likely to fail and is not repeatable. Nei-
ther the process nor the artefacts can be validated and the final product is not
maintainable. This is why in the days of the software crisis, “various large soft-
ware projects were almost all one-off projects, developed for specific customers,
and all too many of the largest projects were characterized by underestimates
and overexpectations” as Randell recalls [88].

The participants of NATO’s Conference set the intent of software engineer-
ing to provide the construction of software systems with a sound mathematical
foundation and based on this foundation to develop systematic methods, tools,

and standards for software design, analysis, implementation, verification, and
validation—like the traditional branches of engineering disciplines [75].

The report on the NATO conference demonstrates that it was very stimulat-
ing and history also proves it created great impact. Brian Randell pointed out
in his keynote presentation at the 2018 International Conference on Software
Engineering (ICSE) [88], among other software engineering subject areas, some
people who attended NATO’s conference were motivated by the problem of how
to create programs that were mathematically-proven to be free from errors, be-
coming pioneers of formal methods (e.g., Edsger Dijkstra [29]), and some started
the area of fault-tolerant programming, concerning how to design programs that
could be usefully relied upon even if it was admitted that they still contained
yet-to-be found bugs (e.g., Randell himself [86]). The first author of the present
paper has worked on formal techniques in fault-tolerant programming [62,67].

In the half-century since the NATO conference, as well as these aspects of
software engineering, intensive research has been conducted on “all aspects of
software production from the early stages of system specification through to
maintaining the system after it has gone into use” [96]. A rich body of knowledge,
principles, and methods, including development processes, architecture styles,
design patterns, programming paradigms, as well as techniques and tools for ver-
ification, validation, program construction, synthesis, etc., have been proposed
and developed [45]. Research on formal methods [10] has also advanced with
the development of comprehensive theories of formal semantics of languages,
specification and verification techniques, and related tools [101].

At the same time, the software industry is still producing increasingly com-
plex as well as larger software systems. However, it appears that there is a com-
mon concern about the degree of systematic adoption of the concepts, principles,
and methods developed by the research community. Software practitioners do not
necessarily see that research software engineering methods solve their problems.
Common complains are that methods developed by the research community, and
in particular formal methods, are difficult to understand and hard to scale up,
and therefore they cannot meet their market requirements.

Hence, large systems which are constructed in an ad hoc way are costly, likely
to fail or are not delivered on time. The construction process is not repeatable
and have poor system reliability. Our understanding is that the main reasons for
the gap between systematic software engineering methods and industry practice
include, among some other issues, that theories, techniques, and tools developed
in software engineering fundamental research:

(a) generally lack a seamless and coherent combination of theories, techniques,
and tools for the various dimensions of the multi-scale design space, such as
behaviour, quality of service (QoS), space and time, and thus

(b) usually consider only local solutions of methodology, tools, and models that
ease part of the development, rather than the definition, management, and
execution of the entire process, and especially

(c) they do do not effectively address project management problems.

These problems are especially true for existing formal methods. Each formal
method is based on an abstract model, which only considers one or at least very
few aspects of the system, thus not addressing problems concerning all aspects
of the design. In addition, there no systematic, sound, and coherent combination
of different formal methods to solve combined issues in the design. This is also
true to some extend for informal software engineering methods (or empirical
methods), and informal methods themselves are less systematic because they are
prone to ambiguity and different interpretations.

For two decades, we have believed that model-driven development [63] is the
key to closing the gap, as it naturally provide the linkage between the concepts
and methods in empirical methods and those in formal methods. In principle,
model-driven development can be used to define the development process, the
technology architecture that consists of methods, techniques and tools needed
in the process, and the (models of) the system architecture of the system under
development. This means that use model-driven method as meta-method to
engineering formal methods in defining a development process and technology
architecture for a system construction (or for solving a software system problem
in its life cycle).

In this chapter, we recall the history of principles of abstraction, in program-
ming languages in particular, which have driven the increase of software pro-
ductivity and at the same, together with increasing power of computers, have
led to the development of ever-larger software systems. We argue that these
abstractions are integrated and reflected in software system architecture. The
increasing size and complexity of software systems requires the use of engineer-
ing disciplines, processes, and modelling. Effectively modelling a complex system
always needs certain degree of formality.

Software modelling involves both informal and formal activities and they
need to be managed carefully for a seamless combination. Therefore, we propose
the idea of engineering formal methods where systematic and effective use is
possible. We consider the main concepts, the theoretical challenges, and technical
challenges, involved in establishing the framework of engineering formal methods
together. The process and techniques for system architecture modelling are the
core of the framework. We study the traditional separation of application domain
modelling and the software requirements modelling and show how to combine
them into a unified modelling of Human-Computer-Physical System (HCPS)
architecture modelling. From that point, the approach is intended to allow a
smooth transition into discussions of problems in HCPS modelling and to provide
an outline framework for engineering formal methods for HCPS development.

The remainder of this tutorial paper is organized as follows. Section 2 provides
a discussion on the nature of software and software system development, as well
as the difference between programming and software. Section 3 summarizes some
major ideas of abstraction, which mark milestones in the history of software
engineering development. With this discussion, we demonstrate the importance
of abstraction in a systematic approach. This provides the background for the
discussion in Section 4 about the development processes, the architecture of

software systems, and technology architectures for their development. The point
we wish to emphasize is that the architecture of the software systems as produced
through the development process from the requirements for the system. The
architecture plays a determining role in the definition and management of the
development process.

In Section 5, we provides a review of formal methods, mainly to show that
there are a large number of formal methods. There is no single one formal method
can solve all the problems in a system’s development, and there can be more than
one formal method used for a particular design problem in the development.
Therefore, there is need for the architecture model and development process to
consider the use of formal methods and tools. We propose an approach with
a combination of application domain modelling and requirements modelling for
software systems. Further, in Section 6, we present a component-based, multi-
view and multi-level approach to domain modelling, including a defintion of the
notion of domain architecture. Then we continue with a discussion in Section 7
concerning how to produce a model for the requirements of a software system,
based on a model of the application domain architecture. The combination of
requirements model and domain model naturally forms a general model of an
HCPS. Based on this conceptual approach, in Section 8 we discuss the evolution
of the concept of HCPS during the last 15 years, the new challenges in modelling
and design based on the unified domain and software requirements modelling in
Sections 6 and 7, identifying the shortcomings in the theories, techniques, and
tools of existing formal methods. A conceptual architecture model is proposed
in this section, and based on it, we propose a framework for engineering formal
methods for the development and evolution of HCPS. Section ?? summarizes
this tutorial paper.

This tutorial paper is based on a number of lectures and talks on concepts,
abstractions, principles, and challenges, in software engineering, in relation to
HCPS.

2 Software Development is Different from Programming

We often wonder about the definition of software and what is the difference
between programs and software. In fact, the notion of software evolved from
that of a program. Here we quote some software engineering pioneers.

A program is something that I write and I use. Software is something that
I write and you use. This requires more work. It has to be generalized,
it has be tested, it has to be documented, and usually it has to be
maintained.

Fred Brooks
ICSE 2018 Keynote [14].

Note that the key words in Brooks talk are generalization, testing, documen-
tation, and maintenance, and these are about the term program and software

(product) in the early 1950s. Brooks went on to introduce the software entity
software systems.

The next kind of entity . . . is a software system—a system of many sep-
arate programs working together. And this requires more work because
you have to define the interfaces, and many many many system debug-
ging troubles are because my understanding of the at least the connota-
tions of the interface and your understanding of the unit connotations
of the interface are different, and they don’t work, so now we have to do
set of system integration and test . . .

Fred Brooks
ICSE 2018 Keynote [14].

These are Brooks’ notes about software in the late 1950s. The form of software
was software systems, in which many systems were integrated through their
interfaces. However, the interfaces then were not defined with rigorous semantics,
which was the cause of integration problems. Margret Hamlton, who is regarded
to be the first to coin term “software engineering”, went even further when she
talked about the insight gained in her Apollo experiences [35] to understand
software [38]:

With multi-programming, shared responsibilities and more interfaces
within and between every mission phase (8 tasks based on timing, 7 jobs
based on priority); man-in-the-loop multi-processing within the overall
system of systems.

Margaret Hamilton
ICSE 2018 Keynote [14].

What Hamilton emphasized, in addition to the integration of many programs,
was the relation between software and hardware and human interaction, with
the aim of better system reliability, more parallelism, and improved reuse and
evolution.

Brian Randell, a participant and editor of the report of the 1968 and 1969
NATO Software Engineering Conferences [75,89] drew “a harsh distinction” be-
tween “bespoke” and “off-the-peg software” [87,88]:

Since [the NATO conferences] not just one, but rather many, types of
software industry have come into existence, in particular those that de-
sign or tailor “bespoke” software for particular clients and environments,
and those that produce “off-the-peg” software packages that are sold to
thousands or even millions of customers. The first type is a recognisable
successor to the software activities of the ’60s. In the second, very dif-
ferent, type of software industry economies of scale, and Darwinian-style
evolution, have a large impact on what sorts of software get implemented,
and how such implementation is undertaken, e.g. involving getting hun-
dreds or thousands of users involved, willingly or unwillingly, to help

with software validation and refinement . . .

Any reasonable account of how far we’ve come since the late ’60s (and
where we have got to) has to treat these two types of software and soft-
ware industry very differently. The first type of software industry has
gone on to attempt ever larger and more complex tasks. But it is still
subject to many of the same challenges concerning implementation cost,
project schedule, performance and (especially) dependability that so ex-
ercised the NATO conference participants. The second now provides a
wonderful marketplace of usable and useful software systems, utilities
and applications that has utterly transformed society’s utilisation and
perception of computers. But technical monoculturalism, allied to the
growth of computer networking, has led to this industry and its cus-
tomers also suffering from all sorts of malicious, indeed criminal, activ-
ities that were not in any way foreseen in the discussions at the NATO
conferences.

Brian Randell
Keynote at COMPSAC 2008

and reiterated in a Keynote at ICSE 2018 [88].

With our understanding of the above quotes by the software engineering pioneers,
we confirm the definition of software system which we gave in the lectures at
SETSS 2014 [63]:

We thus define a software system to consist of set of architected programs
and data that tell a set interrelated computers what to do and how to it.
Computers include all devices with programmable processing capacity,
all kinds of “smart devices” as well as “computers”, that now affects all
aspects of daily life.

Zhiming Liu
Lecture at SETSS 2014 [63].

In this section, we had a detailed discussion on some different views concerning
software and software systems, before we summarized our views in the above
definition. This definition gives an explicit emphasize on the architectural aspects
of system of systems and the significance of data. In most cases, a software
system is still an engineering product or artefact. Therefore, it must be delivered
with enough documentation and subsequent maintenance is required after it has
become operational. Later in Section 4, we will see the open architecture that we
propose used to combine continuous system evolution with system construction,
operation, and maintenance, with data used as a resource for system evolution.

3 A History of Abstractions in Software Engineering

We now consider the historical development of software engineering based on
notes given by some software engineering pioneers, literature, and Internet sources.

We emphasis on the abstractions proposed historically, which had led to signif-
icant advances in software technology. In any other engineering discipline, the
construction (or development) of a complex system or product is done in a well
defined process by employing proper methods and tools. These methods and tools
are developed with applications of mathematical and scientific theories and/or
experiments, and preferably standardized. The requirement for a defined process
and the use of proper (and standard) methods and tools is for overall trustwor-
thiness of the product, including the demand that the process is repeatable and
certifiable, and that the product can be verified and validated according to the
requirements of the product.

3.1 The motivation and aims of software engineering

The notion of software engineering, as well as issues discussed at and the aims of
the 1968 NATO conference on software engineering [75], implies that construc-
tion of complex software systems should be done systematically, in a repeatable
and certifiable process using sound methods and tools, like other traditional engi-
neering branches. The consequence of increasing engineering in software produc-
tion is improved quality, dependability and productivity, and deduced cost and
development time. This understanding is consistent with the following definition
given in Ian Sommerville’s widely-used software engineering textbook [96]:

Software engineering is an engineering discipline that is concerned with
all aspects of software production from the early stages of system speci-
fication through to maintaining the system after it has gone into use.

In general, the theoretical foundations for the development of methods and tools
that are used for general and systematic construction of engineering products
are often based on ideas of abstractions. This seems even more true for the con-
struction of a software product, since it is purely made of logical mathematical
objects, unlike engineering products such as a building houses or bridges, where
the functionality is mostly determined by their structure and the materials used.
A software product does not exhibit physical characteristics and its functional
behaviour is more complex to understand [9,12,13]. Note that a software system
behaves very differently when its environment changes, which often happens.
Indeed, the development of software engineering theories and methods has been
driven by the idea of abstraction. We give a brief account of this below.

Abstraction in computer architecture In the early 1940s, when the first
digital electronic computers were designed, the commands to operate the com-
puters were wired with the hardware [58]. It was soon realized that this design
made programming these machines inflexible, and the idea of stored program
architecture was developed, evolving to von Neumann architecture [100]. This
was an important idea of abstraction to separate “software” from “hardware”,
to deal with the complexity of computing, enabling common principles to be
used flexibly to program different machines.

3.2 Abstraction in programming and programming languages

Along with the abstraction in the design of computer architecture, abstractions
also developed in programming data structures and languages for programming
the computers in the 1950s. The computers then were bare machines, and pro-
grams in the early 1940s were written, using binary (or octal) machine codes
for instructions and explicit reference to absolute address represented in binary
code too. The programs written on paper had to be transferred to punched pa-
per tapes [14]. This way of programming was very slow and error-prone. It was
hard to find and correct errors in programs, as when the result was wrong there
was little feedback about when and how the program execution went wrong.

In the late 1940s, low-level assembly language was introduced to eliminate
much of the error-prone, tedious, and time-consuming programming in machine
instructions. Then a program called an assembler was responsible for translat-
ing assembly language to machine language. The introduction of this layer of
indirection was very important in freeing programmers from tedium such as re-
membering binary or octal codes and calculating addresses. Early hand-written
programs were used by those who wrote them. Assembly language enabled much
faster program writing and programs could be distributed to be used by others
as well as the original programmers. A software product was possible, to be used
by customers or clients other than the program authors. Thus, the notion of
software product emerged (in the early 1950s) and a program could be delivered
to many customers for their use. For this, documentation, testing, and ongoing
maintenance are required. These became possible with programs in assembly
language.

With the support of assembly language, functionalities that needed to re-
peatedly execute in a program or commonly needed in several programs were
defined and implemented as subroutines [71,103,104]. From the middle of the
1950s, high-level programming languages became avaiable. The first widely used
high-level programming languages were Fortran (1956 by John Backus), Cobol
(1959), and Algol (1958–1960). These languages (or their descendant) are still in
use today to a greater or lesser extent, partly due to legacy code produced over
the years. The main idea of high-level programming language appeared much
earlier due to Konrad Zuse in 1943–1945 [33]. A high-level programming lan-
guage uses natural language word elements (such “if . . . then . . . ” and “ while
. . . do . . . ”) together with mathematical expressions. It provides programmers
with strong abstraction from the details of the computer.

Compared to low-level assembly language, high-level programming languages
provided another layer of indirection. This layer was realized through an inter-
preter or a compiler, or a combination of both. The interpreter of a high-level
programming language is a program that follows the program flow, reads each
program statement, and then executes it by interpreting it directly as a series
of machine code instruction. A compiler translates the syntax of a program into
an executable form (“object code”) before running it, and the executable form
can be either machine code or an intermediate representation.

With high-level languages, more programs structures were defined and im-
plemented as programming language facilities (or mechanisms), e.g., functions,
procedures, data types, etc. This allowed programmers to identify and design
significant algorithms, a major challenge in programming at that time. It also
provided better standardization, generalization, and thus reuse in many aspects
of programming thinking, program design, program implementation, program
operation, and its maintenance.

Apart from algorithm design, another major concern of programming in the
1960s was data structures. Data types were introduced in high-level languages
like Fortran and Algol. A data type defines a set of permissible data and the
permissible operations on these data. Thus, data types liberated programmers
from error-prone ad hoc design and use of data in programs.

While the level of abstraction in programming languages was increasing,
software systems such as input and output converters, symbolic assemblers, and
compilers, became available, together with new hardware devices. The notion
of a software system, a system of many programs working together, evolved.
However, new problems were raised with this new layer of abstraction such as
interface definition, system integration, system testing, and system debugging.
This was due to the lack of a means for rigorous definition and understand-
ing the semantics of program interfaces. Different people’s understanding of the
connotations of the interfaces can easily vary if formal definitions are lacking.
In fact, the notion of software system was first practiced in building the first
known operating system, GM-NAA I/O [93]. This was an integration of a num-
ber of component programs, including an input translator, an output converter, a
SHARE Assembly program, and a compute monitor program. Operating systems
in general were yet another layer of abstraction, realized as a software system
to manage the computer hardware and software resources, providing common
functionalities for computer programs.

Advances in programming languages and tools can therefore be characterized
as having been gradually increasing the abstraction level, by introducing high-
level language constructs that represent common concepts and design patterns
of software designers.

3.3 Abstractions in software development

Compared to low-level languages, high-level programming languages greatly im-
proved productivity for software systems in the 1960s. Increasingly large and
complex systems were produced. Meanwhile, computers were becoming more
powerful, especially those with hardware designed for operating systems, e.g.
multiprogramming and time sharing operating systems [23], which ended the era
of bare machines with no operating system. Therefore, requirements for large
and complex software systems were rapidly increasing. Software system devel-
opment worldwide started to encounter issues. The growth in complexity due
to combinatorial possibiities for interaction was nonlinear and this caused ma-
jor concerns in project management. With this background, computer scientists

and software development practitioners started to consider the notion of writ-
ing programs as an engineering discipline and the 1968 NATO conference [75]
recognized the problem of the software crisis, discussed it, and called for estab-
lishing engineering foundations, principles and methods for the production of
software systems. Many of the fundamental theories and principles and meth-
ods were then developed with important ideas concerning abstraction, including
those outlined below.

Objects, classes, and inheritance The concepts of objects, classes, and inher-
itance were introduced in the Simula programming language by Kristen Nygaard
and Ole-Johan Dahl in 1967 [77]; Simula is regarded as the first object-oriented
programming language. The important concept of class, and thus the essential
notion of object-orientation, was to separate the implementation from the inter-
face, representing the data layer and the control layer.

Information hiding, modularity and encapsulation The ideas of subrou-
tines, procedures, functions, and data types, were further developed to cover
the notion of modules for information hiding [78]. This was also introduced into
programming language design and resulted in languages with modularity [59] to
provide protection for related procedures and data structures, through separa-
tion of the use of functionality and data from the implementation. The concept
of modularity was then further used to reflect the general engineering principles
of divide and conquer, separation of concern, and reuse, such that the overall
design problem of a large software system should be decomposed into the design
of a set of modules of logically discrete functions for subproblems.

The interfaces of modules aught to be well-defined with respect to legitimate
inputs, expected outputs, and the associated valid operations. How the function-
ality was to be done (i.e., the implementation) inside the module should not be
visible from the outside of the module. Therefore, the overall design problem of a
large software system could be divided into subproblems. These formed the basis
for a structured analysis and design technique approach or structured software
development paradigm. In this paradigm, software architecture was defined as a
set of modules interacting with interfaces between them.

Theoretical study of the separation of the specification from the implemen-
tation of modules led to the establishment of the theory of abstract data types
(ADT) [60]. In ADTs, the notion of algebraic specification of data types was de-
fined as axiomatic (using a many-sorted algebra) and as a composition of data
types. ADTs were then generalized from data type specifications to program
algebraic specifications [16]. ADTs allowed software engineers to consider the
requirements for data structures and specify them in early stages of the software
development before the programming stage.

Information hiding and modularity were also introduced in object-oriented
programming languages as encapsulation with private fields of classes (and pri-
vate classes). In the object-orientated approach, the access to the functionality

or the data from outside the object can only be done through the object in-
terface, i.e., its public methods. Language facilities were provided for different
levels of information hiding (or encapsulation). The notion of encapsulation was
also used to raise the design level of classes and packages above the level of the
programming language to object-oriented requirements analysis and design [9].

4 Software Development Processes and Software
Architecture

In all traditional engineering disciplines, complex systems are produced in well-
defined processes to improve the design, product management, and project man-
agement, in order to ensure the quality of the engineering product. Also, any
serious engineering system construction is undertaken with the system architec-
ture in mind. When software systems become more complex, the implementation
requires a development process and an architecture.

4.1 Software development process

With software systems increasing in size, it was natural to consider the prob-
lems of planning, budgeting, and management of their development. This has
to consider the development activities with their corresponding requirements,
proposed techniques, and available expertise. Therefore, the notion of software
development process emerged, dividing the development into distinct phases,
identifying when and what to do at each phase, who (i.e., people) are needed to
do it, and what methods, techniques, and tools should be used [61]. Notice that
this definition emphasizes the relationships between development jobs, people,
and expertise. This includes the definition of software artefacts to be produced
at each phase. We believe that these relations form the basis for principles and
techniques to improve the design, product management, and project manage-
ment in large software system development [11].

The earliest ideas for the principles associated with the development process
were the top-down incremental build [73] and stepwise refinement of Niklaus
Wirth [105]. The earliest widely cited process model is the Waterfall Model [92].
Further well-known extended models include the Spiral Model [7,8] and the V-
Model [32]. These models refine and extend the Waterfall approach with an
emphasis on risks analysis for the former and verification and validation for the
latter. They both emphasize the iterative and incremental nature of the devel-
opment of large software systems. With the popularity of the Unified Modeling
Language (UML), the (Rational) Unified Process (RUP) [52] emerged in the
early 2000s as a combination of the Spiral process and the V-model, with more
activities and the production of executable models using tools.

Software development process models are defined in terms of activities in
workflows of software development. However, they are described with princi-
ples, techniques, and conditions for quality and risk control/management. This
is because the development of software system activities in any nontrivial case

must be done using design, construction, and verification and validation tech-
niques/tools, as for any engineering system development. The body of principles
and techniques required and availability is extremely large, as is the design space.
Considering, for example, the issue of selecting a programming language (tak-
ing into account the expertise of the programmers in the development team),
there are no less than 8,945 different programming languages [88,26]. Thus, it
is extremely difficult to define a concrete development process for a particular
project before the project starts and to decide the activities with mappings to
artefacts and techniques. We believe that this is the main reason that software
development models often attract criticisms for being unrealistic or impracti-
cal. However, we take a more positive view on the importance of the notion of a
software development process and accept the essential characteristics of software
system development due to its inherent multi-dimensional complexity described
and reiterated in the literature [11,12,13,14,9,96]. We quote Brooks:

There is no single development in technology or management which alone
promises a 10× gain in 10 years– is again true 30 years later.

Fred Brooks
ICSE 2018 Keynote [14].

We also the quote Randall from Ian Sommerville’s book [96]:

There are no universal software engineering methods and techniques that
are suitable for all systems and all companies. Rather, a diverse set of
software engineering methods and tools has evolved over the past 50
years.

Brian Randall
ICSE 2018 Keynote [88].

In this tutorial paper we propose, or more precisely we promote, a unified and
evolutionary development processes that should accommodate “agile methodolo-
gies” [2], to allow flexible changes during system development and evolution.

4.2 Software architecture

Routines, modules, data types, classes, and packages in high-level programming
languages made software systems development increasingly systematic and dis-
ciplined, thus enabling collaborative development processes by teams of devel-
opers. However, they were still very much at the programming level for the
implementation and reuse of algorithms and data structures. The interactions
among the modules were mainly local invocations of functionalities.

With advances of computer systems from a single processor running a pro-
gram one at a time, through multiprogramming systems and multitasking sys-
tems, to multi-processors computers and networks of computers, with increas-
ingly programmable input, output, and communication devices, the size of soft-
ware systems for the evermore powerful and complex computers were increasing

rapidly and the interactions of their components were becoming more compli-
cated. Designers of software systems with this level of complexity started to
realize and consider design problems related to the system’s overall structural
organization at a level of abstraction above the algorithms and data structures.
This was then the notion of software architecture design, developed from intu-
itions of hardware and network architecture, as well as the classical computer
architecture [81,80].

Roughly speaking, software architecture is the fundamental structure of a
software system, comprising software components, connections among the com-
ponents, and properties or constraints concerning the components and connec-
tions. Software architecture design reflects the engineering principles of decom-
position and separation of concern of the overall system requirements, beyond
the level of algorithms and data structures. Its concerns cover the following is-
sues. The software architecture should:

– reflect the architecture of the computer system on which the software is to
run;

– reflect the structure of the domain business organization, business processes,
and their interactions;

– represent the decomposition of the functional requirements, including its
behaviour or functionality, data flows, interaction protocols, synchronization,
etc., through the system [46];

– relate to the software system quality of service (QoS) attributes such as
fault-tolerance, extensibility, reliability, maintainability, availability, security,
usability, and other architecturally significant requirements, sometimes called
the “ilities” [18].

Therefore, software architecture can and should serve the following purposes:

– It is the vehicle to carry the defined requirements of the software system.
– It is used as the map for identification of principles, techniques, languages,

models, and tools to be employed in the further design and implementation of
the software system. This means there is a correspondence relation between
the software architecture of the system and the technology architecture for
its development.

– It serves as the basis for defining and managing the project development
process:
• organizing the development teams and assigning jobs to team members

according to their expertise;
• guiding the communication and collaboration between members of the

development team in their development activities, as well as their man-
agement and coordination;

• planning the development job and estimating the costs;
• helping in risk identification and management.

– Its design and documentation facilitates and guides communication between
stakeholders, captures early decisions about the high-level design, and allows
reuse of design components between projects.

Though the importance of software architecture is commonly recognized in the
software engineering community, research on software architecture has been
largely dispersed and there is no established theory of software architecture.
Effort in software architecture research has been mostly devoted to architec-
tural styles. A software architecture style or an architectural pattern is a gen-
eral, reusable solution to a commonly occurring problem in software architecture
within a given context or a kind of software system.

There are a significant number of architectural styles, described in differ-
ent levels of formality, from descriptive terms used informally to describe sys-
tems, through those with precisely define components and connectors, to some
that are more carefully documented as industry and scientific standards. Early
and well-known architecture styles include Blackboard, Repository, Pipes and fil-
ters, Client-server, Layered, etc., and model architecture styles including Object-
Oriented Architecture, Component-Based Architecture, Service-Oriented Archi-
tecture, and Microservice Architecture.

A conclusion of our discussion in the previous and the current sections is that
systematic engineering design of software systems has been developed through
a regular increase of abstraction level in programming language design and soft-
ware architecture. The establishment of software architecture and software devel-
opment processes gives software design better engineering characteristics. How-
ever, our observation shows that software development has not harvested enough
from software architecture and development processes, in the application of for-
mal methods in particular. In subsequent sections, we will re-emphasize the
importance of software architecture and development processes, especially their
relationship, in the development and evolution of software systems for emerging
networked systems, including cloud-based services systems, Internet of Things
(IoT), and Human-Cyber-Physical Systems (HCPS).

5 A Review of Formal Methods

While software systems were becoming larger and more complex, their verifi-
cation and validation for correctness and quality of services were becoming ex-
tremely challenging. Techniques and tools for testing and code inspection based
on the semantics of programming languages could not be systematic enough
or comprehensive. Without a sound mathematical model of program languages,
fully systematic and comprehensive program correctness verification was not be
possible. No matter what could be done, some bugs would always remain in any
realistically-sized system. Here we quote:

The major cause of the software crisis is that the machines have become
several orders of magnitude more powerful. To put it quite bluntly: as
long as there were no machines, programming was no problem at all;
when we had a few weak computers, programming became a mild prob-
lem, and now we have gigantic computers, programming has become an
equally gigantic problem.

Edsger Dijkstra
“The Humble Programmer”, CACM [30].

In this section, we present a review of the development of formal methods [10].
Unlike earlier more comprehensive surveys with a focus on the state of the art
(e.g. [101,106]), we instead discuss the development of the important ideas, the
common theoretical roots, and relationship with technology developments. Our
main purpose is to consider the selection and integratation of different techniques
into a development process.

5.1 Formal semantics of programming languages

The idea that we can prove the correctness of programs was widely established in
the late 1960s, with Floyd’s paper on Assigning Meanings to Programs [31] and
Sir Tony Hoare’s paper on An Axiomatic Basis for Computer Programs (known
as Hoare Logic) [42]. Both showed how proof of program (functional) correct-
ness based on an abstract and formal semantics defined for the programming
language. We say that semantics is “abstract” because it defines an abstraction
model of the execution of each program in the programming language, instead of
execution of the machine code of the program generated by the language com-
piler. It is formal as the model is defined precisely using mathematics from the
formally defined syntax of the language, and this rules out any ambiguity. The
ideas and importance of program formal verification and formal semantics of
programming languages were proposed earlier, e.g., Turing’s idea of “checking a
large routine” [99] and McCarthy’s talk on “mathematical science of computa-
tion” [72]. Thus, formal semantics of programming languages established a pre-
cise abstraction of their execution. Both Floyd and Hoare used formal first-order
logic to define the semantics and the associated proofs. Later, the expressiveness,
soundness, and completeness to the completeness of Hoare Logic were proved [4].

The notion of formal semantics of programming languages therefore pro-
vides a level of abstraction of program execution beyond the semantics defined
by a compiler in terms of direct machine code execution. Later, formal seman-
tics at different levels of abstraction were defined, which are mainly represented
by Scott-Strachey denotational semantics [95,98] and Plotkin’s structural oper-
ational semantics (SOS) [83]. Formal semantics theories are usually classified
into four kinds and they are operational semantics as such Plotkin’s structural
operational semantics, denotational semantics such as Scott-Strachey semantics,
algebraic semantics such as abstract data types (ADT), and axiomatic semantics
such as Hoare Logic, in increasing levels of abstraction (but algebraic semantics
and axiomatic semantics are at about the same level). These different kinds of se-
mantics are defined for various programming languages of different programming
paradigms, including structured programming languages, concurrent program-
ming languages with shared variables, concurrent and communicating programs,
object-oriented and service-oriented programming languages. A theory of unifi-
cation of these different semantic theories is best studied in Unifying Theories
of Programming (UTP) of Hoare in He [44].

Since the 1968 NATO software conference [75], theories of formal seman-
tics became the foundation for the development of formal methods, including
formal specification, verification, and refinement, forming a subfield of software
engineering. As surveyed in [101], over a dozen Turing Award laureates have
made pioneering contributions to the development of formal methods, as shown
in Table 1.

Year of Award Name of Laureate Area of Contribution

1971 John McCarthy Computational Theory,
Semantics of LISP

1972 Edsger W. Dijkstra Calculus of Predicate Transformers

1976 Dana Scott Denotational Semantics and Modal Logic

1978 Robert Floyd Axiomatic semantics and verification

1980 Tony Hoare Axiomatic semantics and CSP

1984 Niklaus Wirth Programming language’
formal specification

1991 Robin Milner CCS, bisimulation, LCF, ML

1996 Amir Pnueli Temporal logic and verification

2007 Edmund Clarke
E. Allen Emerson Model checking

Joseph Sifakis

2008 Barbara Liskov Abstract data types, Larch

2013 Leslie Lamport Temporal logic of actions

Table 1. Turing Award Laureates in Formal Methods

5.2 Formal specification and models

The rigorous study and analysis of program correctness based on formal se-
mantics necessitates the requirements of the program to be specified formally,
describing what the program should do rather than how the program does it.
This implies that the language used for requirements specification is at a level of
abstraction above the programming languages to be specified. Since the 1970s,
a large number of specification languages have been developed.

There are mainly two kinds of specification languages. The first kind of lan-
guages are for specification of whole system behaviour, including data function-
ality, control flow, and data flow. A specification language of this kind has a
well-defined semantics and a specification in the language defines a model of
the software system under design. The specifications can be at different levels
of abstraction and similarly for their models, formally related by partial orders
(refinement) between specifications and refinement between models. We will dis-

cuss this further in the next subsection. Table 2 gives a list of major specification
languages of this kind.4

Year Name of Language Features Key Original Contributors

1972 VDM [50] denotational semantics D. Bjørner
derivative design C. Jones

1974 Z [97] axiomatic semantics J.-R. Abrial
refinement

1975 Guarded commands [28] logic based Edsger Dijkstra
Action Systems refinement [3] R.-J. Back

1987 OBJ [34] algebraic semantics J.AĠoguen

1988 B-Method [1] abstract machine semantics J.-R. Abrial
refinement

1988 UNITY [17] axiomatic semantics K.M. Chandy and J. Misra

1990 TLA [53] temporal logic L. Lamport

1992 Larch [36] algebraic semantics J. Guttag, S. Garland
J. Wing, et al.

1999 JML [56] contract-based design Gary T. Leavens

2001 Stream Calculus [15] algebraic semantics Manfred Broy

2004 rCOS [64,40,41] contract-based design Zhiming Liu, He Jifeng
OO, CBD, Refinement Xiaoshan Li, et al.

Table 2. A List of Software System Formal Specification Languages

All the specification languages in Table 2 have denotational or axiomatic
semantics (or algebraic semantics), and allow specifications of different levels of
abstraction. They also have the notion and rules (though in different degrees of
formality) of specification refinement and thus support the top-down derivation
of a program from a specification and bottom-up software systems integration.
Therefore, formal methods based on these languages provide formalization of
notions of a software system development process and principles. There is the
yet to be developed capability of supporting the definition and management of
the entire processes and not to consider only point solutions of methodology,
tools, and models that ease part of the design.

The other kind of specification languages and theories focuses on the ab-
straction of specific aspects or design problems of software execution, including
control flow, data, concurrency, and synchronization. These theories mainly con-
cern concurrent software systems (although the theories in Table 2 can deal with
concurrency too). In Table 3, we list some well-known theories of this kind. There
are further similar theories or extended versions of them. Compared to the theo-
ries in Table 2, these theories mainly deal with interaction, communication, and
synchronization, with or without real-time aspects.

4 The years and features of the methods in the table are not guaranteed to be accurate
or comprehensive.

Year Name of Theory Features Key Originators

1962 Petri Net [82] true concurrency C.A. Petri
event based interaction

1977 Temporal logics [84] property oriented A. Pnueli

1978 CSP [43] channel and event based C.A.R. Hoare
synchronous communication

algebraic reasoning
denotational semantics

1980 CCS [74] event based R. Milner
synchronous communication

operational semantics
algebraic reasoning

1987 I/O automata [68] asynchronous communication N.A. Lynch
distributed system model

1987 Statecharts [39] state machine & diagram D. Harel
hierarchy communication

1991 Lustre [37] data flow N. Halbwachs,
synchronous language P. Gaspi, et al.
signal communication

1992 Esterel [5] synchronous language G. Berry
signal communication

1995 Uppaal [55] real-time model K.G. Larsen,
model checking Wang Yi

2001 Interface Automata [27] component-based model L. de Alfaro
T.A. Henzinger

Table 3. A List of Feature Specific Formal Specification Languages

CSP and CCS both provide theories for algebraic reasoning of equivalence
and refinement or simulation of software systems (although they can model and
reason about hardware behaviour). The automata or state transition system-
based models (i.e., I/O automata, Statecharts, and Uppaal) support algorithm-
based verification, i.e., model checking. The synchronous languages Lustre and
Esterel are for real-time control and monitoring systems. They have tool support
for code generation and they are the basis for the implementation of the industry
tool SCADE.

5.3 Formal techniques in software development

We take the definition that a method is a set of techniques and tools for solving
a class of problems which are developed based on a sound theoretical founda-
tion. In software systems, a technique means a way of carrying out a particular
task in a software development process, especially the execution or performance
of phases, such as requirements specification, design, or verification. The term
formal software development actually means a development that involve inten-
sive use of mathematically-based techniques, such as formal specification and

verification. We do not consider separate fully formalized development or formal
engineering methods. However, we rather propose seamlessly to integrate formal
methods, more precisely formal techniques and tools, into overall software devel-
opment processes, that is to engineer formal methods in software development.

The trinity of formal methods – specification languages, models, and
software correctness The specifications languages in Table 2 and CSP, CCS,
Lustre and Esterel in Table 3 have a formally (mathematically) defined syntax
and semantics. They can specify both the static structural view and dynamic
behaviours of software systems (we only consider functionality at the moment)
and thus are system specification languages.

With a temporal logic-based formal method, abstract execution modes of
software systems are defined, such as state machines and labelled state transi-
tion systems or automata. These provide the semantics (interpretations) of the
underlying logic. The formal language of the logic is used for the specification
of properties as logical formulas that the system being studied, or under con-
struction, is required to satisfy. The formulas form the formal specification of
requirements.

The correctness of the system with respect to the specification is defined
as the satisfaction of the relevant formula by the model of the system. This
is denoted as M |= Spec where M is the model of the software system and
Spec is the specification of a formula. The theories of input-output automata
are mainly about models for behavioural or execution of concurrent and com-
munication systems. They are used with one or more temporal logic statements
when dealing with software system verification. Therefore, the fundamental re-
lation among specification languages, models, logic, and software correctness, is
a direct inheritance of the trinity of logic, that is language, interpretation, and
proofs.

Refinement and code generate A system specification language usually is
expressive enough to specify models of a software system at different levels of
abstraction. These languages can specify non-deterministic behaviour. A spec-
ification Spec2 is said to be a refinement of a specification Spec1, denoted by
Spec1 v Spec2, if Spec2 is not more non-deterministic than Spec1. More formally,
if the semantics of a specification Spec is defined as the set of non-deterministic
behaviours [[Spec]], Spec2 is a refinement of a specification Spec1 means the be-
haviour set of Spec2 is a subset of that of Spec1, i.e., [[Spec2]] ⊆ [[Spec1]].

If the semantics [[Spec]] of a specification [[Spec]] is defined as, or it itself
is, a logical formula, such as a TLA specification, Spec2 is a refinement of a
specification Spec1 if Spec2 implies Spec1, i.e., [[Spec2]]⇒ [[Spec1]]. This is why we
say in general specification and program refinement means behaviours inclusion
and logical implication. Therefore, the refinement relation between specification
is a partial order, and two specifications are equivalent if they are a refinement
of each other.

The behaviours of a specification are defined in different forms for different
languages, and a language can have different but related semantics. For example,
CSP has a trace semantics, a failure semantics and a failure divergence seman-
tic [91]. CCS has mainly an operational semantics. In principle, however, each
language can and should have both operational and denotational semantics and
their correctness (or consistency) with each other should be proved. Denotational
semantics supports the development of verification techniques for specification
(or model) refinement and transformation.

Some theories, such as Z, CSP, Action Systems, the B-method, and rCOS
have fully formal rules of refinement to support stepwise program derivation.
Some other theories have a mathematical definition of the refinement relation,
but steps of program derivation are carried out at the semantic level.

CCS and Larch (and CSP too, in addition to its refinement theories based on
denotational semantics) provide algebraic reasoning about system model equiv-
alence. However, equivalence is define between high-level models at a high level
and those at low level through hiding information, internal interaction, or be-
haviour.

In purely logical theories such as TLA, UNITY, and dynamic logic (an ex-
tension of modal logic), program models are fully specified as logic formulas and
specification refinement is directly defined as logic implementation. Then deriva-
tions for program development are performed using the deduction rules of the
logic.

Lustre, Esterel, and SCADE, are mainly for signals in the control and mon-
itoring of embedded systems. These systems are usually not data-intensive,
but their control flow, synchronization, and real-time aspects, are crucial and
can be safety-critical. The tools for these frameworks have strong support for
correctness-preserving code generation. In theory, code generated from a model
is a refinement of the model.

Refinement and code generation are, or should be, mostly used in a top-down
development process. Decomposition of a large model into submodels and the
composition of them are part of the refinement process. Fig. 1 from a formal
method review paper [101] illustrates the framework of formal refinement.

Fig. 1. Process of Formal Refinement

Verification – deductive theorem proving and model checking Given a
model M of software systems and specification Spec of a property of the model,
as a formula of the logic. The satisfaction of Spec by M , denoted as M |= Spec
can be proved from a set Γ of “known” properties of M . These are made in the
deductive proof system of the logic. This approach is known as theorem proving
that is rooted in classical mathematical logic.

Another method of verification of the satisfaction of a property by a model
is using an algorithm that takes as inuts a model M and a specification (i.e.,
a property) Spec and outputs the answer as to whether M satisfies Spec. This
approach is called model checking [22,85]. Model checking can be fully automatic
and there are indeed quite a number of software tools for model checking. How-
ever, as many satisfaction problems are hard problems in terms of computational
complexity, and some are NP-hard problems, the scalability of model checking is
still a significant challenge. Therefore, model checking can only effective in some
verification problems.

The approach of theorem proving complements model checking by enabling
the proof of properties that are not feasible using model checking. Software
tools for theorem proving are normally called theorem provers. These tools are
interactive, rather than being completely automatic. The state of the art of
verification tools are those with a combinations of model checking, automatic
satisfaction solvers, and interactive deductive proving, although there is still
some way to go to become generally effective.

Combination of formal techniques for engineering formal methods
Theories of formal refinement help to provide insight into the understanding
of the relation between development tasks and software correctness, as well as
the validity of links between the techniques used in different development tasks.
However, applying formal rule-based stepwise refinement to large system devel-
opment is not feasible. Therefore, less formal steps of refinement are often used.
In this case, verification of the correctness such refinement is needed and the
verification can either be done by theorem proving or through model checking
of conditions. Nowadays, interactive theorem provers employ model checking al-
gorithms and SAT/SMT (satisfiability modulo theories) solvers. An SMT solver
like Z3 [6] is, differently from model checking, based on decision algorithms for
constraint satisfaction problems. Model-checking algorithms now also integrate
SAT/SMT solving algorithms.

In addition to the techniques of refinement, theorem proving, model checking,
and SAT/SMT solving, there are also techniques of abstract interpretation [25]
and program synthesis [69]. If we consider refinement being best for for top-down
design, abstract interpretation can be used to build more abstract models from
more concrete models, especially for execution models of programs. Program
synthesis is the construction of a program from a specification. This is usually
through constructing proof of the specification (which is a logic formula) to form
a program. Alternatively it may be used to find a model such as an automaton

from a formal logical specification. Abstract interpretation makes use of formal
proof techniques and can have different degrees of automatization.

Through over 50 years research and development, there are now a large num-
ber of specification languages, models, and techniques for verification. We have
covered some of the most significant advances in the development of verification
(or proof) tools. Thanks to improving online resources, we refer readers to the
Wikipedia pages for the techniques of theorem proving, model checking, and
SMT solving techniques:

– https://en.wikipedia.org/wiki/Automated_theorem_proving

– https://en.wikipedia.org/wiki/Model_checking

– https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

Each of the above pages contains a reasonably complete list of tools for the
techniques.

The crucial importance of formal specification, design, and verification cannot
be ignored now with the overwhelming increase of software-based safety-critical
applications. For example, aircraft control software systems and car software
systems may be required to be formally specified and verified (e.g., by standards).

However, with the availability of the large body of knowledge of theories,
techniques, and tools, software engineering practitioners, those in industries of-
ten wonder which formal methods are the best. Indeed, we have been asked
questions like “which of method X and Y is better?” Considering the complex-
ity of software development and the large number design problems nowadays,
our answer to this question is a restricted version of the earlier quotes from
Brooks, and Sommerville [96] in Section 3, that is:

There is no single formal method or technique that is alone enough for
a non-trivial software system development. Rather, a diverse set of for-
mal techniques and tools has to be combined and used with informal
engineering methods.

Therefore, in the design and management of a software development process,
there is a need to consider which development tasks require what formal tech-
niques and tools, as well as the required expertise in the formal methods to be
used. The software architecture should also serve as a knowledge map for the
identification of expertise, techniques, and tools. This is the main intention of
the notion of engineering formal methods, which we propose in this paper.

6 Domain Modelling

The important aspects of abstraction, development processes, and software ar-
chitecture, as discussed in Sections 3 and 4 have led to empirical modelling and
design of software systems. The formal theories and techniques reviewed in Sec-
tion 5 are motivated by and reflect those informal and conceptual ideas and
principles.

https://en.wikipedia.org/wiki/Automated_theorem_proving
https://en.wikipedia.org/wiki/Model_checking
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

As claimed in Section 5 that a development of a software system cannot be
purely formal, it must involve interactions of formal and informal, objective and
subjective, and technical and non-technical activities [102]. There is unfortu-
nately an ignorance or lack of understanding of these interactions, in both the
academic community and the software industries. This is a crucial factor for the
slow adoption or integration of formal methods in industry software development
and the lack of enough interest among students to study formal methods.

In traditional model-based system and software engineering, domain mod-
elling and system modelling are in general separated to develop a framework for
the combination of informal and formal modelling. We propose to study the rela-
tion between modelling the application domain and modelling the requirements
of software systems for the domain, and to develop a unification of them into a
framework for modelling human-cyber-physical systems (HCPS) in Section 8. To
this end, we need to understand some core notions, which are important in sci-
entific and engineering modelling, including concepts, relations among concepts,
functionality, processes, components, systems and architecture. These ideas are
key to the development of object-oriented, component-based, and service-based
modelling frameworks in software engineering from both domain modelling and
software systems modelling. We envision that they are important in developing
a unification of these modelling frameworks for HCPS.

6.1 Modelling in general

Domain modelling is part of system requirements modelling and analysis, and
in general is to clearly and precisely define the functions, operations, services,
and processes, together of course with the related concepts and data too. It also
relevant to the study of modelling more generally.

In general, a model of a thing or object is an abstraction or a representation of
the essential properties of that thing or object. What is essential depends on the
modeller’s interest. In engineering and science, modelling is treated more seri-
ously and systematically. As Lee says, “the act of modeling involves three distinct
concepts: the thing being modeled, the model and the modeling paradigm” [57].
There, he gives two examples of modelling. The first is:

“Newtonian model of a mass and a spring (the thing being modeled)
consists of an ordinary differential equation (ODE) (the model). The
modeling paradigm is the mathematics of calculus and differential equa-
tions.”

Edward A. Lee, 2015

The second is:

“a computer program written in C (the model), which models the be-
havior of an electrical machine (a computer) that transforms binary data
stored in electrical memory. Here, the modeling paradigm is the computer
science theory of imperative programs.”

Edward A. Lee, 2015

6.2 Domain processes, concepts, and architecture

Software, and in fact any ICT system, is typically developed for use in an appli-
cation domain, and evolves along with the evolution of the application domain.
The first and most common informal activities are in the understanding of the
application domain together with the capture and analysis of the requirements
of the software system to be designed and maintained.

However, there are different definitions with respect to applications. One
commonly used in the community of model-driven development is that the ap-
plication domain of a software is the segment of reality for which a software
system is developed, which can be an organization, a department within an or-
ganization, or a single workplace. In fact, a domain in this view is more precisely
a concrete domain scenario. Another understanding of the domain of a piece of
software concerns the knowledge area of the application, such as medical and
healthcare, enterprise of trading, banking, aerospace, and automotive.

A domain is mainly described in terms of functions, operations, services, and
processes in that domain. These are usually called domain functions, domain
operations, domain services, and domain processes. These are understood at two
levels. At the meta level (conceptual level), they define types (or classes) of
instances of the functions, etc., that are actually executed in the domain. In
the meta level, they are described in terms concepts and types of data. At the
instance level, executions are defined in terms of instances of concepts (also called
objects) and data of data types at the meta level. With the view of the domain as
a knowledge area, the application can be described more generically, but it is then
hard to define the stakeholders, and thus scope, boundary of the application, and
the concrete performance and properties of the services. Then processes cannot
be easily specified. On the other hand, given a concrete application scenario,
a domain is always defined with a boundary that demarcates its content. The
boundary is often but not necessarily related to a boundary in the physical world,
such as a department of a university, a floor of a smart building, or even, say,
the heart of a person.

We take the view that a domain always has a boundary that demarcates
its content. This content comprises the domain functions, domain operations,
domain services, domain processes, together with the concepts and types of data
(i.e., data at the conceptual level), which are used in the description of the func-
tions, etc. It is important to understand that the concepts and types of data
define the objects and data which are involved in the execution of the functions,
operations, services and processes. Some of these objects are actors and some are
resources. The data is usually used to represent properties of objects, functions,
operations, and processes. For domain understanding in general, concerning do-
main understanding and modelling, analysis at both the meta level and instance
level (or execution level) are needed.

Functions, operations, services and processes are all functionality or features.
Their difference is mainly in their granularity and there are applications that are
function oriented, operation oriented or interaction oriented, and service oriented
or process oriented, depending on their domains. In general, a process-oriented

domain often has a layered structure in which processes are formed at a higher
layer though coordinating and orchestrating functions, operations, or services
in the layer below (sometimes other layers). In this case, processes of a layer
can also be abstracted and treated as interface operations or services. These
processes can then be used to compose higher-level processes, in order to allow
them to collaborate and share resources. For example, the processes related
to sales, inventory management processes, and staff management processes in
a supermarket are managed and coordinated at the supermarket management
level. Furthermore, an enterprise of a supermarket chain comprises the processes
that manage, control, and coordinate the processes of the supermarkets within
the enterprise.

Thus, a well defined domain forms a system and it has a clear horizontally
component-based and vertically layered architecture, regardless of the level of
computerization (or digitization) in the domain. Even with a purely manual
system, i.e., with no digital computers used at all, a domain also has an archi-
tecture of its organized services and processes in its sub-domains and different
layers of abstraction. The architecture also has its executions, which are called
the dynamic behaviour of the domain (architecture). Communication for inter-
action and exchanges of data among the components in a horizontal level and
in different layers are involved in a domain execution.

Taking the view of Lee on modelling in subsection 6.1, the things to be
modelled in domain modelling are the domain processing, together with the ob-
jects and data involved in the processes. The overall models of these processes
form a model of the system architecture. There are a few well-known paradigms
for domain modelling, including Jackson’s problem frames [47,48], Parnas’ four-
variable method [79], and the use-case driven approach [54,61]. The key idea of
these methods is to identify the interface between the environment and (part
of) the software system under design (SUD). At this stage, the SUD is actu-
ally a model of a domain process or a set of domain processes to be realized
by the SUD. These domain processes are, in general, discrete sequences of state
changes caused by interactions with their environments. Some domain processes
are processes and modelled with continuous functions, which are often defined by
differential equations. In more general and complex application domains, there
are hybrid processes of discrete state changes and continuous evolutions between
discrete state changes. Obviously, when producing models for processes, the ob-
jects and data involved must be modelled. A modelling paradigm provides a
theory and techniques for modelling the processes and the architecture at dif-
ferent levels of abstraction and from different view-points. We give two examples
to show these important ideas.

6.3 Discrete interactive processes and physical continuous processes

Consider a domain D with it boundary. We are usually (at a moment of time)
concerned with a set of processes of the domain that forms a component C of
D. The processes in C can have interactions among themselves, called internal
interactions or internal communications. They also have interactions with the

rest of the domain, denoted by E , called the environment. These interactions
are the external interactions or external communications. The domain D can be
represented as D = C ‖ E , and in this model, C is modelled with “extensive”
details, while the model of E only focuses on the interactions with C and abstract
assumptions on its behavour. It can be seen that we can carry out incremental
modelling of C by considering processes one by one.

A modelling example of a discrete interactive process We give an exam-
ple in which the domain system mainly comprises data or information processes.
The argument we make is that different views should modelled in different lan-
guages; different domains should be modelled in different languages; even when
notations used are syntactically the same, their semantics may be different (at a
certain level of abstraction); and the language used should be within the exper-
tise of the modeller. These different modelling notations are known as domain
specific languages (DSL).

Example 1 (Point of Sale). We take the problem statement from the book of
Larman [54,61]:

Consider the construction of a software system for Point of Sale to be
used in a store to processes sales and manage inventory. The goal is
for increased checkout automation to support faster, better and cheaper
services and business processes, and [. . .] quick checkout for the customer
fast and accurate sales analysis.

The modelling always starts with informal analysis and description of the do-
main. For such a data-intensive system (or information system), we propose that
in the domain modelling, one needs to identify:

– domain (business) processes and represent them as use cases;
– domain concepts together with their relations and model them by a concep-

tual class diagram;
– business rules and constraints and describe them as system invariant prop-

erties.

It is important to understand that carrying out each action in a business process
involves objects and data. The objects are the main instances or entities of
domain concepts. Objects collaboratively involved in an action must be related
in some way and this is defined as relations between the domain concepts that
define these objects. We can see the understanding of use cases is intrinsically
object-oriented, although the design and implementation of the software does
not have to be object-oriented. When describing a use case, it is important to
be clear about the “significant” concepts and objects, giving them definitons
that are precise enough for our purposes. The same attention should be paid to
relations between concepts.

Fig. 2 is an sample description of the use case for checking out a customer,
where only cash payments are handled, We give the use case the name “Buy

Use Case: Buy Items with Cash

Typical Course of Events

Actor Action what to do

1. This use case begins when
a Customer arrives a Cash
Desk with items to purchase.

2. The Cashier obtains and
records the identifier from
each item.

3. Determines the item price and
adds the item information to
the running sale’s transac-
tion. based on the catalog

If there is more than one same
item, the Cashier can enter the
quantity as well.

The description and price of
the current item are presented.

4. On completion of the item en-
try, the Cashier indicates to
the Cash Desk that item entry
is completed.

5. Calculates and presents the sale
total.

6. Cashier tells the Customer the
total.

7. The Customer gives a cash
payment, possibly greater
than the sale total.

8. The Cashier records the cash
received amount.

9. Shows the balance due back to
the Customer. Generate a re-
ceipt.

Exceptional course
1 Line 2: Identifier is not valid or

found.
Exception handling

2 Line 7: Customer does not
enough money

exception handling

Fig. 2. A use case description

Items with Cash”. The description is informal, but tends to be structured and
precise.

Note that here we focus on domain processes without even needing a computer-
ized system. Therefore, when we have an interaction of a process with input or
triggering actions, we ask what the action will actually have an effect in terms
of storing data, checking conditions, doing computation, and making decisions.
Specifying what to do is essential, but not what or who does it, or how it is done.
In the Buy Items with Cash process, we can assume that the Cashier actually
takes the computational responsibilities to carry out the actions with tools, even
if these are just pen and paper.

We take the use case description as a global behavioural view. It is more con-
cerned with the interactions, but it contains information about domain concepts

(a)

Catalog Store

name
address

Sale

date
time

Product

Specification

description
price
upc

Line Item

quantity

Payment

amount

1 1

Uses

1

*

Has

 1 *

LogsCompleted

1

1

isPaidBy

1 0..1

Describes

Contains

*

1

(b)

 Cashier

:BuyItems-Controller

enterItem(ups,quanity)*

endSale()

makePayment()

(c)

BuyItems-Controller

loc=new

Quantity balalce=0

Quantity total=0

Sale sa=null

enterItem()

endSale()

makePayment() (d)

isCompletenew
enterItem()

isCompletemakePayment()

enterItem()

endSale()

Fig. 3. (a) class diagram of POST, (b) sequence diagram of use case BuyItems, (c) use
case controller of BuyItems, and (d) state diagram of BuyItems

and data. It also contains an abstract description of the data functionalities of
each interaction. However, it is not easy to handle and communicate such an in-
formally described use case. With further analysis, we can create the interaction
view model as the sequence diagram in Fig. 3(b) and the conceptual structure
view as the conceptual class diagram in Fig. 3(a), which we call the conceptual
model of the the use case. These models are more formal with symbolic represen-
tations of the process, its concepts, and associations among concepts. We treat
a use case as a component of the whole domain system and document use case
interaction actions in the component box of Fig. 3(c). These actions in the box
are the interface operations of the component with its environment. To study
the dynamic flow of control and for application dependency, property verifica-
tion, such as reachability properties, a state machine model as in Fig. 3(d) is
needed. The models in Fig. 3 become fully formalized only when the semantics
of the diagrams there are also completely formal. Indeed, their formalization is
given in the rCOS method for formal refinement of object-oriented (OO) and
component-based systems [65,41,19,21].

Note that we are modelling a domain process and the name of the component
BuyItems-Controoler represents the role or agent that carries out what respon-
sibilities of the actions are required to do. In this example, it can be the cashier
herself or another agent. Here, the entity agent is to provide the separation of
the interface events from their effects. We will see in the next section that this
separation helps us to identify what can be digitized in a system.

To represent what an action does clearly, we use the notion of a contract,
which is a precondition and postcondition. For example, for action enterItem(upc, quantity),
we describe its contract as follows:

– Precondition: upc exists and is valid.

– Postcondition:
• If a new sale, a Sale was created.
• If a new sale, the new Sale was associated with the CashDesk.
• A SalesLineItem was created.
• The SalesLineItem.quantity was set to quantity.
• The SalesLineitem was associated with the Sale.
• The SalesLineItem was associated with a ProductSpecification, based on

UPC match.

The precondition assumes what input parameters are allowed for execution and
the postcondition specifies what property will be guaranteed after the action if
the precondition holds before the action start. Again, the above description of
the precondition and postcondition of an action, which form an contract of the
operation, is informal. The formalization of contracts of use case operations is
part of the rCOS method for formal refinement of OO and component-based
systems [65,41,19,21].

In rCOS, we have extensively studied ways of creating these view models
(see Fig. 3) and defined their formal semantics individually, together with their
consistent integration. Now, let us use D, representing the domain of a given
supermarket, which has a large number of business processes and objects. Let
BuyItems-Controller be the formal integration of the identified Buy Items with
Cash use case. Then, D = E ‖ BuyItems-Controller, where E represents the
environment of BuyItems-Controller in D, i.e., the interactions of actors with
BuyItems-Controller. Notice that here E is an abstraction of the rest of D apart
from BuyItems-Controller, only stating the constraints on the external interac-
tions with BuyItems-Controller. When another process (or use case) P is mod-
elled by E1 ‖ P , then the domain model becomesD = E2 ‖ BuyItems-Controller ‖
P , where E2 = (E ∪ E1) − (BuyItems-Controller ∩ P). Note here that the set of
behaviours of E2 is the union of those of E and E1, without the intersection of
the behaviours of the use cases BuyItems-Controller and P .

The domain can be incrementally modelled, domain process by domain pro-
cess. In our project on the CoCoME benchmark [90] problem, which is an ex-
tended version of the Point of Sale problem, we used model-driven design of a
system with eight use cases [20,21]. The notations we used in this example are
exactly from rCOS. In our previous work on rCOS, however, we were concerned
with software system requirements modelling, considering the relation between
the software system being modelled and the environment at the same time. In
this section, we propose a framework for domain modelling independently, in
order to allow us to identify where, what and why software systems are required
in the domain.

A modelling example of a continuous process This example shows the key
ideas of modelling a continuous process. We wish to emphasize that the process
of building a model of a thing is a cognitive procedure of analysis, simulation,
and reasoning about a sequence of models, involving abstraction, refinement,
decomposition, and composition.

Example 2 (Pacemaker). For example, consider the design of an artificial pace-
maker, which is a device to maintain an adequate heart rate, for example if the
heart’s natural pacemaker is not fast enough. For the functioning of a heart, we
quote the description from the paper [49]:

. . . “The Sinoatrial (SA) node, which is a collection of specialized tis-
sue at the top of the right atrium, periodically spontaneously generates
electrical pulses that can cause muscle contraction. The SA node is con-
trolled by the nervous system and acts as the natural pacemaker of the
heart. The electrical pulses first cause both atria to contract, forcing
the blood into the ventricles. The electrical conduction is then delayed
at the Atrioventricular (AV) node, allowing the ventricles to fill fully.
Finally the fast-conducting His-Pukinje system spreads the electrical ac-
tivation within both ventricles, causing simultaneous contraction of the
ventricular muscles, and pumps the blood out of the heart.”

End of Example

Model refinement: The designer needs to understand a natural heart, both of its
structure and behaviour. There can be many models about the rate of a heart,
with different levels of accuracy. With each model, the healthiness of the heart
can be decided. Therefore, we can have a number of models of a healthy heart.
For example, given a heart, we can use the number of beats per minute (b/m) as
its model, and we denote this model as Hb/m. We define the heart to be healthy
if its rate is within [50, 90]b/m. Another model of a heart is produced by an
electrocardiogram (ECG) test, denoted by Hecg, and the heart is healthy under
this model if its ECG test is ”normal” (defined according to medical science).
For use, there are sophisticated models produced by medical experts, as used for
example in the paper [49].

We say that any heart Hecg is a refinement of Hb/m, since there are more
details represented in the former than in the latter. More importantly, whether
the heart is healthy (or unhealthy) according to Hecg must match this criterion
according Hb/m.

Model decomposition: Further study on the components of a heart by cardiac
electrophysiologists has led to models of hearts as compositions of models of
components. For example, a heart has three components, which work together
for blood supply. They are the sinoatrial (SA) node, the left and right atria,
and the left and right ventricles. The SA node, which is also called the natural
pacemaker, regularly generates an electrical pulse; the pulse causes both atria to
contract, causing the ventricles to collect and expel blood. We use SA to denote
the model of the SA node, LA and RA to denote the models of the left and right
atria respectively, and LV and RV the models of the left and right ventricles
respectively. Then a component-based model Hc of a heart H is defined to be
the composition SA‖LA‖RA‖LV ‖RV .

The example shows that a model of an object is a representation of the
observation of the modeller, and the level of details in observations can be in-
crementally refined top-down or conversely abstracted bottom-up. Refinement
by decomposition is to open up an abstract “black box”. Abstraction by com-
position of components is the process of hiding internal details of relations and
interaction between components to make a black box.

Multi-views modelling: When building a model of a complex object, modellers
observe the object from a number of different viewpoints [19]. Each view is
concerned with certain aspects of the objects. Different views can be orthogonal,
but often interrelated, and thus they can be investigated at different times by a
single modeller or concurrently by several modellers, with collaboration.

For example, we may start by observing the rate of a heart as its global
behaviour view and then consider its organization to see its main components
of sinoatrial node SA, the left and right atria, LA and RA, and left and right
ventricles, LV and RV . For each of these components, we are concerned about
the views of their observable functionality in separation, the structure view of
their dependency for interaction, and their dynamic interaction view. We now
discuss a number of views and show how we can build their models.

Heart rate: We use a timed function Hr : Time 7→ {0, 1} to represent a
heart rate as shown in Fig. 4, where Time is the set of non-negative real numbers
in this example. We omit the way the rate of a heart is measured here.

Fig. 4. Heart rate

Interface view of components: We can use a declarative description for
the static functionality view of the components. The following specifications are
given using the syntax of rCOS component declarations, but without adhering
to the rCOS semantics here however.

Component SA {

provided interface {getSignal()};

output interface {outPuls()};

}

Component LA {

provided interface {inSignal()};

output interface {contract()};

}

Component LV {

provided interface {inSignal()};

output interface {bloodIn(), bloodOut()};

}

We can have the same models for RA and RV as for the left counterparts
above, respectively, and they can have diagrammatic illustrations similar to UML
component diagrams, such as those in Fig. 5.

Fig. 5. Components of heart and their interfaces

System structure view: We build the structural view of the heart by
linking the operations (or signals) in the provided and required interfaces of the
components. For example, we can use a renaming operation on a component
to change the names of operations in order to represent the linkages of the
interface operations in different components for interactions. To this end, we
rename inSignal() of LA and RA as outPuls(), to link the output signal
of SA to the input signal of LA and RA for their interaction. We denote the
versions of LA and RA after the renaming as LA[outPuls()/inSignal()] and
RA[outPuls()/inSignal()] respectively.

In the same way, we can rename the inSignal() of LV and RV and have
LV [contract()/inSignal()] and RV [contract()/inSignal()], to link the output
of LA and RA with LV and RV for their interactions. Of course, we can re-
name interface operations with different renaming functions. For example, we
can the output signal outPuls() of SA as inSignal() of LV , instead of renam-
ing inSignal() of LV and RV . We can have the composite model:

Component Heart {

LA || LA[outPuls()/inSignal()] ||

RA[outPuls()/inSignal()]|| LV[contract()/inSignal()] ||

RV[contract()/inSignal()]

}

In a formal modelling language, this can be written as an expression of the form
P1 ‖ P2 ‖ P3 ‖ P4 ‖ P5. Fig. 6 give a diagrammatic illustration of the structure

Fig. 6. Structure view of hear

model. The boundary of the domain system is now clear, formed by the interfaces
of SA, LV , and RV , to the outside of the heart.

Component interaction view: The model of the local interface views and
the structural view concern static aspects of a heart. To understand how a heart
functions, we need to observe the dynamic behaviour of the components and
that of the composite heart as a whole.

There are different views of the dynamic behaviour. An important view is
how a component interacts with its environment, through its interface operations
or signals. Furthermore, there can be different views of interest about interaction
behaviours, such as an untimed temporal view and a timed view. We can model
both together in one model, but dealing with them separately can be easier
when these two aspects are complex. For the temporal order of interactions of a
component with its environment, we can use component sequence diagrams [61],
as shown in Fig. 7.

Fig. 7. Component interaction view

System interaction view: As for the composed whole system, there are
two interaction views, the black-box view and a “white box”. With the black-box
view, as shown in Fig. 8, one can only observe the interactions of the system
with its environment without being able to see the internal interaction among
the components of the system. Therefore, no other components can interact with

the components inside the system through internal interfaces, i.e., those linked
pairs of provided and required interface operations. On the other hand, in the
white-box view, the interface operations remain visible to the environment and
thus they still provide interactions to the outside environment.

Fig. 8. System interaction view

We notice that it is difficult to use a sequence diagram to show the broadcast
signal outPuls from SA to both LA and RA, and this is why we make their
parallel composition LA ‖ RA a single component.

Timed interaction view: A model, such as a sequence diagram, for the
untimed temporal order of interactions, expresses the causality relation between
events, but it may not be expressive enough to define the exact time points
of synchronization, depending on the notation used (true concurrency vs. in-
terleaving). However, a model of the timed interactions will present the time
information about when exactly an event can or will happen. We can simply use
timed functions to represent timed interaction behaviours.

For a component, such as SA, a timed interaction behaviour is a function
from time to a set of its interface operations:

Ttrace(SA) : Time 7→ 2{inSignal(),outPuls}

For any time point t∈Time, Ttrace(SA)(t) is a subset of the power set 2{inSignal(),outPuls},
representing the subset of events in {inSignal(), outPuls} occuring at time
point t ∈ Time. When Ttrace(SA)(t) is empty, nothing is happening at time
t; and when more than one event belongs to Ttrace(SA)(t), these events occur
at the same time (with no time delay, even when one causes another). When

Ttrace(SA)(t) is a singleton set, we use the element of the set to denote the set
for notational convenience.

Obviously, not all functions from the time domain to the interface opera-
tions of the component are possible or allowed interaction behaviours. The set
of allowed interactions can be constrained by using logic formulas, e.g., stipu-
lating that when an inSignal() occurs in SA, an outPuls() must occur in a
millisecond; and when an outPuls() occurs SA, contract() must start in half
a millisecond.

Another important view can be trajectories of activation, movement (con-
traction) of the muscle, and the rate of inflow and outflow of blood. Models for
these aspects can be defined using differential equations.

Note that in the example above, we only give conceptual discussions about
modelling, but we do not claim that the example models in the discussion and
figures are necessarily correct models of a heart. Correct models of a heart should
be created by or in collaboration with domain experts, in this case cardiac elec-
trophysiologists.

We choose the notations to use from a subset of UML diagrams, which are
formally defined in rCOS. However, the semantics we use is intuitive and infor-
mal. It is different from the formal semantics, which is defined by rCOS, where
interaction is through method invocations. The interactions for the models in
Example 1 are signal-based and synchronous broadcasting communication is ap-
propriate. This is more common for systems in which components (processes)
are physical objects instead of discrete items of information and data.

7 Traditional Software Requirements Modelling

Different software systems to be developed play different roles in different ap-
plications, i.e., domains, or in different parts of domain system. Thus they are
modelled, designed, and deployed differently. There are typically two kinds of
software:

1. Software systems to provide digital automation of domain processes. In this
case, a process of the software system is to automate, fully or in part, a
domain process. This domain process can be for a computational process,
data or information processing, or a control process, that was previously
performed manually by agents or roles in the domain processes. We call this
type of software system an automation software system. The software system
to be developed for the Point of Sale system discussed in Example 1, indeed
most information systems, are of this kind. Reactive control systems, such
as traffic light control system and railway level crossing control systems, are
also primarily automation software systems.

2. Software systems to autonomously monitor and improving the performance
of the domain system. In this case, the processes of the software system are
added to interact with processes of the domain systems. They can be seen as
redundant components to complement, improve, or correct the behaviour of

domain processes. Such software processes are more autonomous, and thus
we call them an autonomous monitoring software system. The software for
an artificial pacemaker is a software system of this kind. The software system
for an autonomous room condition monitoring system is also such as system.

We do not claim that there is a clear boundary between these two kinds of
software systems. It is usually the case components of both kinds co-exist in a
software system. We make this classification because their requirements capture,
analysis, and modelling are different Their design of interaction protocols is
usually different too.

For a given domain, the requirements modelling of a software system is based
on the model of the domain. We consider requirements modelling for automation
software systems and autonomous monitoring software systems respectively in
the following two subsections and then provide a uniformed notation for their
models.

7.1 Requirements modelling for automation software systems

To design an automation software system, we identify the domain processes (or
use cases or tasks) that are to be automated by the software system, together
with purposes and added business values. Taking the domain model of each
of these use cases, we produce a software model to replace the domain agent
(generally called a use-case controller), which handle the use case in the domain.

For example, if we are to automate the use case Buy Items with Cash, we
will build a model of a software component in the following way:

– First we declare a component with a name, say Component SalesHandler,
together with its provided and required interface operations (in this case
none), where Component is a keyword to indicate that this is a software
component:

Component SalesHandler {

provided Interface {

startSale();

enterItem(upc:UPC, quantity: Quantity);

ednSale();

makePayment(amount: Currency)

}

}

This declaration is made based on the component box of BuyItems-Controller
and the sequence diagram in Fig. 2(b). We can also specify the state state
variables of the component, parameters of the interface operations, and de-
fine the types of the variables and parameters.

– Then we make a sequence diagram like the one in Fig. 2(b), but with the
agent BuyItems-Controller replaced by <<component>> SalesHandler.

– Next we identify the concepts and the associations in the conceptual model
within the domain model that are involved in the operations of the use case
and create a UML class diagram, for example. For this, the contracts of the
operations, both informal and formal, are very useful for making sure which
objects need to be known (stored, operated on, and transferred through in-
teractions) in the software system, i.e., the “need to know policy” in software
modelling. This means the part of the conceptual model of the use in the
domain is mirrored in the software model of the use case.

– Now we create the dynamic behaviour model, for example in a UML state
machine of the software component.

– We refine the contracts of the operations in the domain use case, or create
the contracts if no contract for an operation is given in the domain modelling.
We specify the contracts formally when necessary.

– Finally we define the mapping from the domain elements to the software
model and record it as part of the knowledge of the modelling and the
modelling elements, for later traceability and other purposes.

It is important to note that developing the models of the software model of
the component for a use case is not necessarily a purely mechanical process.
Rather, it is a further refinement to the domain use case. Also, in the domain
model, the models of a use case do not have to include all the view models, most
importantly, the mapping between the modelling elements in the domain use
cases and those in models of the corresponding software components.

The modelling elements in the domain and the software components, in-
cluding sequence class diagrams, sequence diagrams, state machines, contracts
of operations, etc., can be defined with with formal syntax and semantics for
formal analysis, refinement, and verification. If we are only concerned with func-
tionality, each use model consists of the following view model:

1. use case interaction view models – possible modelling notations includes
UML sequence diagram, CSP, trace models: rCOS use case sequence dia-
grams, etc.;

2. conceptual class model (or data model) – possible modelling notations: UML
class diagrams, Z notation, VDM, rCOS, etc.;

3. contracts of the case operations – possible modelling notations: rCOS or
Hoare Logic;

4. state machine – possible modelling notations: labelled state transition sys-
tems (LTS), UML state diagrams, automata, Statecharts, etc.;

5. requirements specifications regarding value-added services, performance, safety,
security, fault-tolerance, etc.

With the software components, the use case actors, the Cashier (or any other
designated agent5), interacts with the software component by only passing in-
formation into the component and receiving outputs from it, without actually
performing any of the functionality of the actions.

5 In old Chinese shops, the Cashier used to send the bill to an accountant sitting in a
glass room doing the calculation.

Replacing the original agent for actually doing the computational tasks in
the domain with the software component requires the design of an interaction
mechanism between the software components to realize the interaction between
the computer and the actors of the use case. If the actor is human, human-
machine interaction technology is used. If the actor is another digital system,
appropriate protocols and mechanisms have to be designed. However, at the
requirements modelling stage, concrete interaction technologies (or input/output
technologies) and protocols are not the main concern.

The philosophical thinking behind this modelling approach is that if we put
the model of the software component within the model of the real-world domain,
in place of the original agent for the use case, we actually transform the former
to a model of a new domain, with the realization and deployment of the software
system in the real world transforming the old world to a new world. More pre-
cisely speaking, we transform a domain model D = E ‖ C to a model D′ = E ‖ S,
where S is model of software components to realize the domain component C.
With this view, our mindset forms separated views of the real-world domain
and the digital system, allowing a view of evolution within the software-defined
world. Indeed, we are working in the real world with software-defined domains,
or actually a software-defined world. This software-defined domain view also
provide a model for prototyping and simulation.

Incremental software modelling and system evolution Sometimes it not
possible (due to the state of the art of technology or for financial consierations)
or not necessary to automate a whole process. We can model a component that
interacts with the original agent of the use case. In this scenario, the software
component will work in collaboration with the agent to fulfill the use case. For
example, we can omit the actions of handling the payment from the automation.
Then the software component only needs to inform the agent (the Cashier) of
the total after the endSale() to handle the payment. We can also take the
domain system with software components that have already been modelled as
new domain systems and identify further use cases for automation.

In other situations, we can also extend a use case for which a model of a
software component is available. For example, we can extend the Buy Items with
Cash to a more general Buy Items use case that, in addition to cash payments,
provides services for credit card payments and cheque payments. In this case,
we can extend the model of the software component for Buy Items with Cash
to a general Buy Items use case [63]. This can even be done after the software
component for the original use case Buy Items with Cash use case has become
operational.

Note that new IT developments can enable new use cases too. Also, an au-
tomated use case may become outdated by advances in technology, just as a
software component can replace a domain agent of a use case. For example,
paying by cheque is increasingly rare and even paying by credit card is being
replaced by apps on mobile phones.

Component-based software architecture model With the view of evolu-
tionary automation, we create evermore models of software components for do-
main processes and refine existing models of software components. We integrate
the software components in ways that allow the interactions among the soft-
ware components to represent the interaction among the agents who previously
handled the use cases in the domain model. This give us a component-based
structure model of the software system. For example, with a number of itera-
tions and refinements, we have created a model for the Point of Sale software
system. Its component diagram is given in Fig. 9. The interfaces of this integrated
software system are use for interactions with the domain system.

<<component>>

StoreServer

<<component>>

StoreInventory

<<component>>

StoreSale

StoreManageIFStoreOrderIFStoreSaleIF

<<component>>

InventoryHandler

<<component>>

SalesHandler

InventoryDeskIF

StoreManageIFStoreOrderIF

OrderDeskIFCashDeskIF

StoreSaleIF

ClockIF

LightIF

BankIF

Fig. 9. A software component

Considering the functionality only, we define a model of software architecture
as an integrated set of models of software components in which all the five view
models of each component as defined earlier in this section, together with their
interface operations appropriately (re-)named for the integration. Hence, the
architecture is defined syntactically and with a rich semantics.

Requirements modelling for autonomous monitoring software systems
Now consider the requirements modelling for an autonomous monitoring software
system, such as an artificial pacemaker. A system like this is required in a domain

system, where some components may exhibit abnormal or faulty behaviour. The
software system is to correct or adjust the behaviour of a faulty behaviour or
even to work in its place if the faulty component stops working.

One important characteristic of a faulty component is that faults occur inside
the component. The occurrence of a fault may not be observed through the
interfaces of the component at the time (or within a certain period of time)
of its happening. However, if an error caused by an occurrence of the fault is
not corrected or minor abnormal behaviour is not corrected in time, a failure of
the component can happen, being observed to violate the requirements of the
component through its interface. Therefore, failures must be avoided to prevent
them from spreading to other components and to the environment of the software
system. A challenge in the design of a software system for such a domain is to
how to detect occurrences of faults or abnormal behaviour where there are no
existing interfaces for this.

Consider the design of a pacemaker in Example 2. Here, we have three models
Hb/m, Hecg of a heart H and a component-based model Hc, where we assume
that Hb/m v Hecg v Hc. Let us also assume there is a model for a healthy heart,
which is the set of behaviours HealthyH.

Let AP be the model of the software system of an artificial pacemaker. We
consider a pacemaker to work well if it works with a heart modelled by M , where
the model M can be any of Hb/m, Hecg, and Hc. is That is, when the pacemaker
works together with the heart, the combined system behaves like a healthy heart.
Formally, this means that the composed model (AP ‖M) v HealthyH. By this,
we mean that (AP‖M) is a fault-tolerant system [66,67]. In general, we would
like to have the property that if a heart is healthy under a more detailed model,
it is also healthy under a more coarse model, i.e.:

(AP ‖ Hb/m) v (AP ‖ Hecg) v (AP ‖ Hc)

These algebraic properties do not alone provide enough of a specification for
designing the software of a pacemaker. We need a model to describe what inputs
it receives and the outputs it generates. The requirement for a pacemaker is that
it generates a beat (i.e., delivers electrical pulses) when the heart does not beat
when it needs to do so. This is the identification of the outputs. In general, the
outputs are to correct faults. To identify inputs, however, is to “get” information
about occurrences of faults of abnormalities, i.e., to detect problems.

Consider further the case of a pacemaker. We can use a sensor to detect acti-
vation of the tissue in the left atrium. When the sensor receives no signal about
activation for a given period of time, it generates an electrical pulse and causes
contraction of the ventricles. Therefore, the sensor acts as the input interface
to the model AP . The interactions of AP with LA and LV are shown in the
component sequence diagram Fig. 10, where s1 representing activation of LA is
sensed by the sensor. Thus, AP does not generate any output to LV and s0
representing no activation of LA is sensed.

Fig. 10. Interactions between components PA and LA and LV

Autonomous monitoring software components can also be designed to detect
abnormalities of interactions between domain components. In such a case, we
can take either of the following approaches:

– We model the protocol as a domain component first with a domain agent to
handle the interactions. The monitoring software can then detect abnormal-
ities, such as duplication, losses, corruptions, timing abnormality, etc.

– We take the components involved in the interactions as a composite whole.
We then model the internal interfaces needed for detecting and correcting
abnormalities as occurrences of internal faults.

Autonomous monitoring software components are usually embedded, physically
or logically, within the faulty components in the domain. Therefore, including a
software model in the domain, does not change the domain structure: no domain
agents are added or removed, but interaction interfaces among the domain agents
are changed.

In general, we assume a domain D, a model C of a part of D and its envi-
ronment E . We design a software system S for monitoring and controlling C, to
meet given requirements. Then the software modelling for S is to transform the
domain model D = E ‖ C into a new model D′ = E ‖ C ‖ S that satisfies the
requirements. For the artificial pacemaker example, AP is the model S in the
new domain.

7.2 Human-cyber-physical pystems – a unified architecture view

From the discussion on domain modelling in Section 6 and that on software re-
quirements modelling in this section, we can see both are cognitionive processes

to obtain incremental and innovative understanding of the domain. For require-
ments capture and modelling of automation software systems, a use-case driven
approach [54,21,63] is more effective and use-case driven requirements analysis is
similar to, or developed from, Jackson’s problem frames approach [47,48]. For re-
quirements capture and modelling of autonomous monitoring software systems,
it is more a combination a use-case driven approach and Parnas’ four-variable
requirements analysis method [79]. The architecture styles of both are component-
based or systems of systems. Note that in an application domain, both kinds of
software systems may be required and thus a combination of requirements anal-
ysis methods is needed.

For the development of a software system, either an automation software sys-
tem or an autonomous monitoring software system, we incrementally transform
the application domain by replacing domain processes with software processes
or by adding software processes into the domain. These software processes op-
erate with each other and with the domain processes in the transformed do-
main. It is easy to imagine that there are software processes in the original
domain. In this case, software components can be replaced; software component
can be monitored, controlled, and enhanced too. Therefore, in such a domain,
human individuals, social organizations and systems, cyber-systems (i.e., soft-
ware systems), and physical processes (such as a heart) interact and collaborate
together to perform tasks in the system. Interactions and collaborations are re-
alized through communication networks and interface devices, such as sensors
and actuators. Furthermore, communications and interface devices can also be
monitored, managed, and controlled by software processes. We thus call such a
domain a Human-Cyber-Physical System (HCPS) and we can see that an HCPS
is a continuously evolving system. Modelling an HCPS becomes a uniform mod-
elling framework that combines traditional domain modelling and software re-
quirements modelling.

The term of HCPS has evolved from the concept of cyber-physical-systems
(CPS), a type of systems that has emerged over several decades [51]. We have
not seen a reference architecture model for HCPS or any proposal for a system-
atic modelling framework HCPS architecture. We have not seen an architecture
model for HCPS. What we propose is that the model of the software systems
should be considered in a unified approach to modelling an HCPS. Although
there are challenging problems, both in theoretical foundation and in engineer-
ing methodology, we are mainly concerned about the interaction mechanisms
among cyber-systems, physical processes, and human beings, as well as the im-
pacts of these systems on each other.

8 Towards Architecture Modelling of Evolving HCPS

In general, a Human-Cyber-Physical System (HCPS) is a system in a particu-
lar domain that consists of human systems, cyber-systems and physical systems
(processes). The cyber-systems interact and collaborate with the human systems
to undertake living, social, business, and manufacturing tasks by using, control-

ling, and coordinating the physical systems. Control in an HCPS is dynamically
shifted between humans and machines. An HCPS is normally a continuously
evolving system. We are concerned with designing software systems for cyber-
systems to maintain healthy evolution and to support beneficial evolution of an
HCPS.

In this section, we discuss the nature of the component systems, especially
the cyber-components required, in a general HCPS, We also argue why an engi-
neering process and technology architecture for using formal methods is required
and discuss what we mean by such an engineering process. We discuss why the
unifying modelling of domain and software systems that we presented in Sec-
tions 6 and 7 is desirable for HCPS evolution. Finally we present some research
challenges in the design of software systems for HCPS.

8.1 Evolution from CPS to HCPS

The notion of an HCPS has resulted through an evolution from cyber-physical
systems (CPS), through integration with techniques of ubiquitous computing
(also known as ambient environment), Internet of Things (IoT), big data, cloud
computing, and artificial intelligence (AI), with an emphasis on human in the
system. CPS was formally proposed in 2006 at a workshop organized by the US
National Science Foundation (NSF) [76]. The large amount of heterogeneous sys-
tems interact through communication networks. Therefore, an HCPS represents
the intersection of the technologies of traditional computation, communication
and control, with the new technologies of IoT, big data, cloud computing, and
AI. We now briefly discuss the the three milestones (or three generations) in the
development from CPS, through big data and cloud-based CPS, to HCPS.

Preliminary CPS CPS was originally defined to refer networked cyber-systems
and physical systems, in which:

– the cyber-world are formed by systems for computing, control and network-
ing,

– the physical world include mechanical, electrical, and chemical processes, etc,
– the cyber-systems control the physical side using sensors and actuators,
– the network connects the sensor network, actuator network and the control

units, and among the computing systems,
– a database server is needed to collect and process events generated in the

system, those generated by the sensors, for computation of control decisions.

In such a system architecture, human users of the system are similar to users
of traditional computer systems, but without being involved in control decision
making. Important related technologies include communication networks, dis-
tributed computing and control, and network of sensors. Here, the concept of
CPS mainly extends that of embedded systems in that the focus of embedded
systems is on computational elements hosted in stand-alone devices, while CPS
is designed as a network of interacting computational and physical devices. A

CPS has many more features, including computations, control, and coopera-
tion that need shared knowledge and information from physical systems to be
responsiveness and self-adaptive.

We can see that a joint model of the physical world and the software systems
in the cyber-world fits in our modelling framework discussed in Sections 6 and 7.
However, the challenge lies in the model of interactions and dynamic behaviour
of the components in order for the whole system to have the required features.
This including difficulties in modelling, such as:

– communication: how can the network realize the system-wide properties,
such as timeliness,

– control: distributed and decentralized control applications are still challeng-
ing,

– hybrid and mobile interactions: modelling interactions between cyber and
physical systems, some of them are mobile, and

– heterogeneity: integrated modelling of timing and concurrency of cyber-systems
and physical processes, and interoperable composition and integration of
models and software components, which are developed by different develop-
ers using multiple formalisms and tools.

The focus of a preliminary CPS is very much in collaborative control systems.

Big data and cloud-based CPS With the technological enabling power of
CPS, sizeable and complex applications, such as power grids, industry manufac-
turing, and traffic control, have kept increasing in multiple dimensions. Different
types of networks, including wired and wireless, internet and radio, local and
global networks, etc., are used in such a CPS. Therefore, the networks in CPS
can encompass the full scope of IoT. Also, the a large amount of sensors and
actuators, hardware and software components, and physical systems, which are
developed and owned by different stakeholders, are managed, monitored, and
controlled within the system. During the operation of such a CPS, many events
are generated. Collecting and processing the data concerning these events are
the basis for effective, reliable, and real-time management and control of the
physical processes, hardware, software, and communication networks.

A “data server” is typically responsible for storing and processing the data
in a CPS. The control system requests services from the data server according
to feedback information or instructions from the users. It then generates control
decisions. Data being generated in a complex CPS typically has the properties
of extremely large volume, high velocity, and wide variety (i.e., different sources
of data). With the huge amount and a large variety of data to be collected in a
CPS, storing and processing such a massive amount data requires a technology
that is “beyond the ability of typical database software tools to capture, store,
manage and analyze” [70]. The solution lies in big data technology. However, big
data analytics for CPS is not only offline processing of historic data, but more
importantly it has to process real-time data and produce responses to events in
real-time.

Data processing and analytic for CPS is significantly valuable (the forth “v”
of big data after volume, velocity, and variety), which is important in following
aspects:

– First of all, we can design software for data analysis and use AI, based on
the large volume of sensors data and system execution data within a CPS to
realize effective, precise and real-time control, and collaboration of physical
processes and software components.

– Secondly, the large volume of sensors data and system execution data in a
CPS can be used to design and implement software components for moni-
toring, detecting, and handling abnormalities and faults in the system for
fault-tolerance, resilience, and robustness.

– Thirdly, big data analysis is beneficial in designing software components for
self-adaption, self-definition for managing the complex dynamic uncertainties
in physical environments, and the communication network, and helping to
ensure system predictivity, adaptivity, autonomy, reliability, and security.

– With the big data generated in a CPS, more value-added applications and
services can be designed and implemented. Consider a lighting system of a
city, for example. The data generated by this system can be used to develop
services for the city management body, for the police authorities, and for the
electricity company’s business management.

However, to process and analyse CPS big data effectively, to synthesize in-
formation and generate knowledge for smart decision making, and for intelligent
and flexible control, we require cloud computing and both rule based and ma-
chine learning based artificial intelligence (AI). The need for cloud computing
is also due to the variety of the stakeholders and owners of the data and in-
frastructures within the CPS. A data server in the cloud becomes the obvious
technology solution to providing an open and flexible platform for a variety of
users to develop services on the CPS. With such a cloud platform, data analytic
models and software can be provided to the control system of the CPS. With
a cloud platform, all devices, hardware and software resources, including sen-
sors, actuators, computation resources, data, application software, etc., can be
managed, controlled, and shared as services.

A cloud platform is naturally service oriented. Therefore, a big data and
cloud-based CPS can effectively leverage service oriented architecture (SoA) style
to form a CPS of multiple layers from CPSs of different application domains.
In the area of industry manufacturing, in particular, there is a clear trend in
combinations of customized and personalized design and production, effective
coordination of product market analysis and planning, product development,
product after-sales services, manufacturing processes, and manufacturing sys-
tems management. For example, with marketing analysis systems and after-sales
service systems, market information and information about the product quality
can be used for product planning, design, quality control and assurance in the
production process (including the use of resources, equipment, techniques, and
skills of staff), and product testing.

Fig. 11. A proposed architecture of cloud-based battery management CPS

Fig. 11 shows a cloud-based CPS that we proposed in a project for future car
battery management. The architecture is organized into four layers. The bot-
tom layer, called the physical layer, consists of car battery management systems
and car systems. They are connected by the network layer to form an IoT. The
network layer also transfers data collected in the IoT to the cloud computing
layer for their storage management, analytics, information synthesis, and knowl-
edge generation. These are to be used for computation, control control decision
making, and for the development of applications.

In addition to the challenges in modelling a preliminary CPS, there are more
difficulties in modelling big data and a cloud-based CPS, among other problems.
These includes the following issues:

– A big-data and cloud-based CPS requires software systems developed using
different paradigms and architecture styles. These software systems are to
interact via heterogenous networks. These pose huge problems of interoper-
ability.

– A CPS is usually safety-critical, and thus correctness, safety, and real-time
properties of software components need to be formally provable, and verifi-
cation of components is required to be compositional. However, there does
not yet exists a theory for data-based AI software verification, refinement,
and composition.

– Different processes and tasks share data, software services, physical infras-
tructures, and devices, as well traditional resources for programming ex-
ecution. For efficient and real-time execution of these tasks concurrently,
software abstractions are needed for the management and control of these
shared heterogenous resources. Their capabilities and complexity are far be-
yond those of traditional operational systems. We do not have established
models and techniques for these abstractions.

Furthermore, the issue of identifying desired features and quality of services of
business, production, and social tasks, and deciding the relevant technologies
for their realization. The state-of-the-art requirements modelling and design for
CPS does provide full support for such a systematic definition of the technology
architecture and process.

Human-Cyber-Physical Systems The concept of HCPS emerged from two
aspects of technology evolution. One is the evolution of integrating human-in-
loop control within the control processes of a CPS. The other is the gradual
integration of digital social media, social networks in big data technology, cloud
computing for knowledge-based intelligent decision making, and the provision
of smart services. The integration of these technologies has also been pushing
forward with the overwhelming development of deep learning technology.

Fig. 12. A cloud-based CPS for battery management

To consider human factors requires extending the cloud-based CPS architec-
ture, such as the one in Fig. 11, by adding human agents or systems in each
layer (except for the network layer). Such an extension then allows, and often
requires, extension of the architecture horizontally for a number of HCPSs in
different domains to be networked. For example, social systems may need to ex-
change knowledge about domains. An HCPS for farm machine manufacture, for
example, is related to an HCPS for a farm. Extending the architecture horizon-
tally typically leads to extension of the architecture upwards as well. Therefore,
we envisage that an HCPS in general has an architecture horizontally and up-
wards with an open multiple three-layer system of systems (Open M3LSOS), as
shown in Fig. 12. At the bottom layer are the unit-level HCPSs to be connected

into the system-level HCPS, and the third level is the system of systems-level
HCPS. Note that an HCPS at a particular level can be used abstractly as a unit
to build an HCPS at higher level.

One of the most significant challenges, in addition to those of CPS and cloud-
based CPS, is that we need mechanisms for modelling, detecting and possibly
predicting human behaviour, a model of the interactions between humans and
cyber-systems, and the possible state changes that can be caused by human
actions. We believe that advanced mathematical models and machine learning
techniques are needed to help with these issues. Current state-of-the-art tech-
niques are either very coarse and general or too application-specific, such as
those of psychological computing, emotional computation, and brain modelling.
The development of dynamic human behaviour models that are both accurate
and general enough remains an enormous challenge.

8.2 Engineering formal methods for HCPS development

Now we outline a framework for engineering formal methods in software develop-
ment, software components for HCPSs in particular, in relation to the uniformed
framework for domain modelling and software requirements modelling discussed
in Sections 6 and 7.

A general model of HCPS We first briefly summarize the following con-
cepts, principles, and processes in domain modelling in Section 6 and software
requirements modelling in Section 7, respectively:

– For a domain modelling:
• identify processes and use cases with their actors, noting that some pro-

cesses are autonomous and do not need an actor to execute;
• identify the concepts and associations among the processes that involve

in the execution of the processes, use cases, and tasks;
• provide the models of the processes and use cases, their interfaces, to-

gether with the model of the domain concepts; and
• integrate the models of the processes and use cases to form the domain

model, denoted by D.
– For software requirements modelling in an application domain:
• identify the use cases that the software system is to automate and the

processes that the software system is required to monitor;
• produce software models for these processes and use cases, together with

their conceptual class models (including data structures) and their in-
terfaces with domains, the actors, or processes; and

• integrate these software models together to form a software model with
interfaces to the domain, denoted by S.

We compose D and S in a way that replaces the use cases by the models of
software components that automate the use cases. Then we add the models of the
monitoring software components into the model D. These software components

will work together with the processes that are being monitored. We denote the
composition as D⊕S. Therefore, D⊕S = (D − U) ‖ S if software component
S automates the use cases in U , and D⊕S = D ‖ S when software component
S monitors and controls some processes in D. We can see that in D⊕S, the
automation software component S interacts with the actors of the use cases that
it automates. The monitoring software S interacts with the domain processes
that it monitors. SInce in general there are humans, cyber-systems, and physical
processes interacting through communication networks, we can understand D⊕S
as a model of an HCPS.

With model transformations, it is possible to organize D⊕S in a hierarchi-
cal component-based and layered architecture, as shown in Fig. 11 and Fig. 12.
However, in practice this is only correct conceptually. We still have to solve the
challenge of defining the models of humans and interactions between software
components and human components before we are actually able to construct a
model of an HCPS, as well as specifying and reasoning about its desired func-
tionality and quality of service (QoS).

Engineering formal methods for HCPS development In Sections 6 and 7,
we discussed the issue that domain modelling and software requirements mod-
elling are both cognitive processes involving informal and formal activities. In
fact, a cognitive process cannot be totally formalized. Formal modelling is not
necessarily creative or innovative. However, a formal model is beneficial in ensur-
ing correctness and developing deeper insight about the object being modelled. It
is the basis for further creative and innovative thinking. Thus, a formal approach
is worthwhile in improved modelling for an HCPS.

One of the most significant purpose of formalization is, however, to stabilize
the models as milestones in the modelling process. These stabilized formal mod-
els are used for formal treatment, such as refinement, integration, verification,
simulation, and traceability checking. These formal activities are very important
for further informal and creative modelling activities.

Next, we understand that, in general, both domain modelling and software
requirements modelling require a variety of expertise and a number of modelling
languages. On the other hand, as we have shown in the formal methods review
presented in Section 5, there is a large number of formal languages and methods.
Typically there are several methods that are applicable for the same view or
problem. For example, one can use either CSP or CCS for specifying concurrency
and communication. Therefore, there is an issue of how to select the languages
and methods to be used in the development.

In an HCPS, there is a large variety of software systems within different
layers, including the following:

– Unit-level systems: embedded software, device drivers, and operating systems
in sensors and devices;

– System level and system of systems (SOS) layer: control and monitoring/coordinating
software, system software for resource management, big data processing and
analytics, various kinds of AI software;

– Application layer: apps, web/cloud services, business and workflow manage-
ment;

– Network layer: communication protocols, network infrastructure and resources
management and scheduling, softwaredefined networking (SDN).

Modelling and development of these software systems involves different software
architecture styles and technologies, including object-oriented analysis (OOA),
service-oriented architecture (SOA), message-driven architecture (MDA), artifi-
cial intelligence (AI), etc. These need different formal modelling languages and
methods for requirements and design.

The modelling framework we propose is based on the conceptual architecture
model in Fig. 12. It starts with software domain and software requirements as
follows:

1. apply the domain modelling concepts and principles to build a domain model
D, i.e., an HCPS;

2. identify where in the domain model that software systems are required and
what kind these will be, following the software requirements modelling con-
cepts and principles;

3. define a process for the software requirements modelling according the nature
of the software systems and the interactions with their environments and the
expertise of modelling team; the modelling process includes when and what
formal models should be produced, by who, and with what methods and
tools;

4. build the software model S for the identified part of the domain in step 2,
by the team following the process and using the methods and tools defined
in step 3;

5. formalize and carry out verification, validation, and simulation for quality
management for the safety-critical models produced in step 4;

6. take the model D ⊕ S as a new HCPS and repeat this process from step 2.

In each iteration of the above model development process, the HCPS can be
extended and different HCPSs for different domains can be composed as a larger
HCPS. These extensions, together with above iterative process, decide the nature
of the overall HCPS as it evolves.

With an architecture model of requirements, a process of design, implemen-
tation, and deployment, can be defined, either top-down or bottom-up. This
demonstrates the importance of the architecture model in defining and manag-
ing the development process.

However, significant barriers to the realization of an HCPS development
process are still numerous, including in particular modelling human behaviour,
human-cyber interaction, composability, controllability and reusability of learning-
based software systems.

8.3 Refinement and evolution of HCPS model

It is impossible to build a complex HCPS from scratch in one go. Instead, a
practical HCPS is continuously evolving. For a given domain, we can think of

a model HCPS for the domain at any given time as a result of evolution from
the domain developing, incrementally adding an increasing number of software
systems.

Given a model built in an iteration of the modelling process, as covered in
the previous subsection, software components in this model, as for non-digital
processes, can be treated as domain processes and can be:

– replaced by another software component that performs “better” than the
original ones;

– monitored, controlled, and coordinated, to ensure that they perform better.

To ensure healthy evolution of an HCPS in this way, we need a notion of re-
finement of HCPS models. For an HCPS component C1 of an HCPS model D,
let P be a (desirable) property of D. An HCPS component C2 is a refinement of
C1 in D with respect to P , denoted by C1 vP C2, if D′ satisfies P , where D′ is
obtained from D by replacing C1 with C2.

We do not have such a partial order vP among HCPS components yet, but
the notion of a contract [94] in an HCPS is believed to be important for develop-
ing such a refinement. With a philosophical intuition, given an HCPS component
C, a contract of C means “ if the set of behaviours of its environment are assumed
to be in the set A, then C guarantees to have it behaviours in G”. This contract
is written as A ` G. The meaning of this contract is defined to be ¬A∪G, where
¬A is the complement set of A.

For example, consider the contracts of two pacemakers p1 and p2 in the
pacemaker example C1 = A1 ` G1 and C2 = A2 ` G2. Assume A1 is the set
of behaviours of LA such that the period of time between two contracts is no
longer than 3 minutes; and A2 is the set of behaviours of LA such that the
period of time between two contracts is no longer than 5 minutes. So A2 is a
weaker assumption than A1 as A1 ⊆ A2. If G2 ⊆ G1, that is G2 is a stronger
commitment than G1, p2 is a better pacemaker than p1. This is because if p1
works for a heart H, p2 also works for heart. In general, a contract C2 = A2 ` G2

is a refinement of C1 = A1 ` G1, denoted as C1 v C2 if A1 ⊆ A2 and G2 ⊆ G1,
intuitively meaning that latter commits a better service G2 than G1 with a
weaker assumption (or requirements) A2 than A1 on the environment.

There are different definitions of contracts for different systems. For example,
a triple {pre}P{post} of a program P in Hoare Logic is a contract for P , and
for a concurrent program P , Jones’s rely-guarantee triple [24] {R}P{G} is a
contract of P . However, the theory of contracts of this form has yet to develop
as a behaviour model of humans; heterogenous components and interactions do
not exist.

Even though the formal theory of contracts for HCPSs does not exist, the
way of thinking with a notion of a contract is useful in building models and in
understanding the evolution of an HCPS. We can see that the following evolution
can be applied effectively:

– develop and plug in new components into the HCPS;
– dynamically find and connect components in the HCPS;

– adding more interfaces and/or improving the performance of interfaces, al-
lowing cyber-components to:

• monitor more and better with respect to its environment;
• be more autonomous (self-contained);
• make more intelligent control decisions and provide smarter services;
• control and coordinate more and better the associated physical compo-

nents.

Finally, advances of HCPSs also relies on technology development in their appli-
cation domains and related technologies such production of sensors and actua-
tors. Therefore, rather than designing large HCPSs, it is better to keep evolving
an HCPS to improve its optimization, smartness, connectivity, autonomy, and
trustworthiness.

8.4 Conceptual integrity and domain system architecture

In Section 6, Section 7, and this section, we have emphasized multi-view and
incremental architecture modelling. Now we can draw the following conclusions:

1. In multi-view modelling, each view model represents certain aspects of the
domain system. The “union” of the views gives the whole system.

2. Multi-view modelling is about separation of concern in modelling, dividing
the problem of modelling or designing models into problems of modelling
from different viewpoints.

3. Refinement of models is about incremental modelling. This can be applied
to models of different views and to a group of models or even the models of
the whole domain system.

4. Multi-view modelling requires the use of domain specific languages (DSLs).

We believe multi-view modelling with incremental refinement is helpful and a
manageable approach to domain modelling. However, to define and ensure the
“integrated unity” of the system architecture from the view models and to main-
tain this “unity” through the incremental refinement modelling process is known
to be a challenging problem in model-driven development [19]. We understand
this unity is a major issue in the context of domain modelling6, the intention of
what is called “the conceptual integrity” by Brooks [11]:

I will contend that conceptual integrity is the most important considera-
tion in system design. It is better to have a system omit certain anoma-
lous features and improvements, but to reflect one set of design ideas,
than to have one that contains many good but independent and uncoor-
dinated ideas. . . . a critical need of large projects is that the conceptual

6 The word “software” is not meant to be a restriction but in this paper we consider
these ideas only within the context of software. Also, the lack of a formal definition
for “conceptual integrity” has made it hard to apply this idea systematically and to
understand it with better insight.

integrity can be achieved throughout by chief architects, and implemen-
tation is achieved through well-managed effort the architects should de-
velop an idea of what the system should do and make sure that this
vision is understood by the rest of the team.

Brooks has not changed his mind. Indeed, he reiterated this in 1995, and again
much later at the ICSE 2018 International Conference on Software Engineer-
ing [14].

In the context of multi-view and multi-level domain modelling framework,
we develop an understanding of conceptual integrity with a domain system ar-
chitecture view, including the following issues:

1. there is a need for a model of the conceptual view for each component of the
system, called the conceptual model of the component;

2. there is a conceptual model of the whole system synthesized from those of
the components, in which a concept is related to more than one component;

3. there is a system structure model that defines the partition of the system
into subsystems (or components);

4. the subsystem boundaries must be at those places where interfaces between
the subsystems are defined rigorously; and this is a defined in a model of
each subsystem;

5. models must be defined for the interactions of the subsystems with their
environments and their dynamic behaviour models, as well as the interactions
of the system as whole and its dynamic behaviour (both black-box and white-
box interactions, and behaviour if necessary);

6. the extensions, i.e., the instances (or objects) of the concepts and their re-
lations in the conceptual models, must be clearly defined; and their should
be consistency conditions among the concepts and relations across models;

7. the concepts and objects in the conceptual models and their consistency
conditions must be consistent with the concepts and objects involved in the
interactions and behaviour of the components, and among the components;

8. consistency conditions the dynamic models of the subsystems and those of
whole system must be defined and ensured;

9. required constraints, both on statics structure models and on dynamic mod-
els, should be defined and ensured by the models.

Items 1–4 above model static aspects of the system; item 5 models dynamic
aspects; items 6–9 are the required conditions for conceptual integrity, including
the requirements in item 9. It is these conditions that are needed to make the
models act in “unity”.

Therefore, an architecture model of a domain system (e.g., an HCPS) at a
given level of abstraction consists of the static structure model of the system
described in item 3, the dynamic models described in item 5, and the conceptual
models, with the consistency conditions and specification of required constraints.

Apart from the possible path of evolution for an HCPS discussed in Subsec-
tion 8.3, a software architecture in general can be refined and extended in the
following ways:

– adding a subsystem that:

• extends the intention and extension (i.e., the set of instances) of the
existing concepts and/or adds new concepts;

• extends interactions with existing subsystems in the current model, prefer-
ably through the system interfaces of the current model; and

• provides (value-added) interactions with the system environment, in-
cluding functionalities and services; or improves functionalities and/or
performance of the current model.

– refining an existing subsystem, through:

• decomposing or adding more properties, behaviour, interactions, func-
tionality, etc., according to new knowledge gained; and/or

• decomposing some of its subcomponents (sub-subsystems).

For component-based design and analysis, we need to treat an architecture
model hierarchically. Subsystems are organized in compositions. A subsystem
has its own architecture that is the responsibility of its modeller (or architect).
In each model refinement step, the conceptual integrity needs to be maintained.
For this, traceability of changes and consistency checks are critical. There is a
need to develop a framework of architectural modelling in which a set sound
methods and tools can be applied in modelling processes. We discuss this in the
next section together with software architecture modelling.

9 Concluding remarks

This tutorial paper is assembled from a number lecture notes, with a mixture
of:

– a historical summary about ideas of abstracts,
– a review of formal methods, and
– some thoughts about the relation between domain modelling and software

requirements modelling.

The points which we wish to communicate include:

– using a seamless combination of informal and formal modelling, as well as
maintaining the domain model as a whole, software system development is
modifying the domain model for an HCPS, and then continuing its evolution;

– software system development, for an HCPS in particular, requires the use
of multiple formal methods; and normally there is more than one method
needed for a particular task;

– the importance of architecture modelling for keeping conceptual integrity as
well as for development process definition and management;

– the shift of HCPS system design to system evolution, taking an existing
HCPS as an infrastructure for the development new systems and services to
extend the original system.

We also discussed the concepts of an HCPS as an integration of a number of
recent technologies. The development of an HCPS involves all areas of ICT
and its application domain. We have proposed a conceptual architecture model,
which has been used to identify some remaining challenges. The architecture
defines an HCPS as an open layered system of systems. Finally, we quote from
David Wheeler on layers of indirections:

“All Problems in Computer Science can be Solved by Another Layer of
Indirection. But that usually will create another problem.”

David J. Wheeler

Acknowledgements: Thank you for project support by the National Natural
Science Foundation of China (61802318, 61732019, 61672435, 61811530327), the
Capacity Development Grant of Southwest University (SWU116007), and the
Natural Science Foundation of Chongqing (cstc2017jcyjAX0295). Thank you to
Museophile Limited for financial support for Jonathan Bowen.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press (1996)

2. Ambler, S.: The Agile Unified Process (AUP). http://www.ambysoft.com/

unifiedprocess/agileUP.html

3. Back, R.J.: On the Correctness of Refinement Steps in Program, Development.
Ph.D. thesis, University of Helsinki, Finland (1978)

4. Bergstra, J.A., V.Tucker, J.: Expressiveness and the completeness of Hoare’s
logic. Journal of Computer and System Sciences 25(3), 267–284 (1982).
https://doi.org/10.1016/0022-0000(82)90013-7

5. Berry, G., Gonthier, G.: The Esterel synchronous programming language: De-
sign, semantics, implementation. Science of Computer Programming 19(2), 87–
152 (Nov 1992). https://doi.org/10.1016/0167-6423(92)90005-V

6. Bjørner, N.: The Z3 theorem prover. GitHub, https://github.com/Z3Prover/z3
7. Boehm, B.W.: A spiral model of software development and enhancement. ACM

SIGSOFT Software Engineering Notes 11(4), 14–24 (Aug 1986)
8. Boehm, B.W.: A spiral model of software development and enhancement. IEEE

Computer 21(5), 61–72 (May 1988). https://doi.org/10.1109/2.59
9. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-

Wesley, Boston (1994)
10. Bowen, J.P., Hinchey, M.G.: Formal methods. In: Gonzalez, T.F., Dı́az-Herrera,

J., Tucker, A.B. (eds.) Computing Handbook, vol. 1, Computer Science and Soft-
ware Engineering, chap. 71, pp. 1–25. Chapman and Hall / CRC Press, 3rd edn.
(2014). https://doi.org/10.1201/b16812, section XI, Software Engineering, Part
8, Programming Languages

11. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley (1975)

12. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20(4), 10–19 (1987). https://doi.org/10.1109/MC.1987.1663532

http://www.ambysoft.com/unifiedprocess/agileUP.html
http://www.ambysoft.com/unifiedprocess/agileUP.html
https://doi.org/10.1016/0022-0000(82)90013-7
https://doi.org/10.1016/0167-6423(92)90005-V
https://github.com/Z3Prover/z3
https://doi.org/10.1109/2.59
https://doi.org/10.1201/b16812
https://doi.org/10.1109/MC.1987.1663532

13. Brooks, F.P.: The mythical man-month: After 20 years. IEEE Software 12(5),
57–60 (1995). https://doi.org/10.5555/624609.625509

14. Brooks, F.P.: Learn the hard way – a history 1845–1980 of software engineering
(2018), keynote at 40th International Conference on Software Engineering (ICSE
2018), 27 May – 3 June 2018, Gothenburg, Sweden. https://www.icse2018.org/
info/keynotes

15. Broy, M., Stefanescu, G.: The algebra of stream processing functions. Theoreti-
cal Computer Science 258(1–2), 99–129 (2001). https://doi.org/10.1016/S0304-
3975(99)00322-9

16. Broy, M., Wirsing, M.: On the algebraic extensions of abstract data types. In:
Dı́az, J., Ramos, I. (eds.) International Colloquium on Formalization of Pro-
gramming Concepts. Lecture Notes in Computer Science, vol. 107, pp. 244–251.
Springer (1981). https://doi.org/10.1007/3-540-10699-5 101

17. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-
Wesley, Reading (1988)

18. Chen, L., Babar, M.A., Nuseibeh, B.: Characterizing architec-
turally significant requirements. IEEE Software 30(2), 38–45 (2013).
https://doi.org/10.1109/MS.2012.174

19. Chen, X., Liu, Z., Mencl, V.: Separation of concerns and consistent integration in
requirements modelling. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plasil, F. (eds.) Proceedings of 33rd Conference on Current
Trends in Theory and Practice of Computer Science. Lecture Notes in Computer
Science, vol. 4362, pp. 819–831. Springer (2007). https://doi.org/10.1007/978-3-
540-69507-3 71

20. Chen, Z., Hannousse, A.H., Hung, D.V., Knoll, I., Li, X., Liu, Y., Liu, Z., Nan, Q.,
Okika, J.C., Ravn, A.P., Stolz, V., Yang, L., Zhan, N.: Modelling with relational
calculus of object and component systems – rCOS. In: Rausch, A., Reussner,
R., Mirandola, R., Plasil, F. (eds.) The Common Component Modeling Example,
Lecture Notes in Computer Science, vol. 5153, chap. 3, pp. 116–145. Springer,
Berlin (2008). https://doi.org/10.1007/978-3-540-85289-6 6

21. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in
component-based model driven design. Science of Computer Programming 74(4),
168–196 (Feb 2009). https://doi.org/10.1016/j.scico.2008.08.003

22. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logics of Programs.
Lecture Notes in Computer Science, vol. 131, pp. 52–71. Springer, Heidelberg
(1981). https://doi.org/10.1007/BFb0025774

23. Codd, E.F., Lowry, E.S., McDonough, E., Scalzi, C.A.: Multiprogramming
STRECH: Feasibility consideration. Communications of the ACM 2(11) (Nov
1959). https://doi.org/10.1145/368481.368502

24. Collette, P., Jones, C.B.: Enhancing the tractability of rely/guarantee specifica-
tions in the development of interfering operations. In: Plotkin, G.D., Stirling,
C.P., Tofte, M. (eds.) Proof, Language, and Interaction: Essays in Honour of
Robin Milner. pp. 277–308. The MIT Press (2000)

25. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of Fourth ACM Symposium on Principles of Programming Languages. pp.
238–252. ACM Press, Los Angeles, California (1977)

26. D, P.: Online historical encyclopaedia of programming languages. http://hopl.
info

https://doi.org/10.5555/624609.625509
https://www.icse2018.org/info/keynotes
https://www.icse2018.org/info/keynotes
https://doi.org/10.1016/S0304-3975(99)00322-9
https://doi.org/10.1016/S0304-3975(99)00322-9
https://doi.org/10.1007/3-540-10699-5_101
https://doi.org/10.1109/MS.2012.174
https://doi.org/10.1007/978-3-540-69507-3_71
https://doi.org/10.1007/978-3-540-69507-3_71
https://doi.org/10.1007/978-3-540-85289-6_6
https://doi.org/10.1016/j.scico.2008.08.003
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/368481.368502
http://hopl.info
http://hopl.info

27. de Alfaro, L., Henzinger, T.A.: Interface automata. ACM SIGSOFT Software
Engineering Notes 26(5) (2001). https://doi.org/10.1145/503271.503226

28. Dijkstra, E.: Guarded commands, non-determinacy and formal deriva-
tion of programs. Communications of the ACM 18(8), 453–457 (1975).
https://doi.org/10.1145/360933.360975

29. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
30. Dijkstra, E.W.: The humble programmer. Communications of the ACM 15(10),

859–866 (1972). https://doi.org/10.1145/355604.361591, an ACM Turing Award
lecture

31. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Math-
ematical Aspects of Computer Science. Proceedings of Symposium on Ap-
plied Mathematics 19. pp. 19–32. American Mathematical Society (1967).
https://doi.org/10.1007/978-94-011-1793-7 4, republished in Program Verifica-
tion (1993)

32. Forsberg, K., Mooz, H.: The relationship of system engineering to the project
cycle. In: Proceedings of the First Annual Symposium of National Council on
System Engineering. pp. 57–65 (Oct 1991)

33. Giloi, W.K.: Konrad Zuse’s Plankalkül: The first high-level, “non von Neumann”
programming language. IEEE Annals of the History of Computing 19, 17–24
(1997). https://doi.org/10.1109/85.586068

34. Goguen, J.A.: Higher-order functions considered unnecessary for higher-order pro-
gramming. Research Topics in Functional Programming. Programming Research
Group, Oxford University (1987)

35. Grattarola, F.: Margaret Hamilton – coding to the moon. A Com-
puter of One’s Own. https://medium.com/a-computer-of-ones-own/

margaret-hamilton-coding-to-the-moon-6ba70b7e6b43 (Dec 2018)
36. Guttag, J.V., Horning, J.J.: Larch: Languages and Tools for Formal Specification.

Springer (1993). https://doi.org/10.1007/978-1-4612-2704-5
37. Halbwachs, N., Caspi, P., Raymond, P., Pilanud, D.: The synchronous data flow

programming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (Sep
1991). https://doi.org/10.1109/5.97300

38. Hamilton, M.H.: The language as a software engineer (2018), keynote at 40th
International Conference on Software Engineering (ICSE 2018), 27 May – 3 June
2018, Gothenburg, Sweden. https://www.icse2018.org/info/keynotes

39. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (Jun 1987). https://doi.org/10.1016/0167-
6423(87)90035-9

40. He, J., Li, X., Liu, Z.: Component-based software engineering. In: Hung, D.V.,
Wirsing, M. (eds.) Theoretical Aspects of Computing – ICTAC 2005, Second
International Colloquium. Lecture Notes in Computer Science, vol. 3722, pp. 70–
95. Springer, Hanoi, Vietnam (Oct 2005). https://doi.org/10.1007/11560647 5,
UNU-IIST TR 330

41. He, J., Liu, Z., Li, X.: rCOS: A refinement calculus of object
systems. Theoretical Computer Science 365(1–2), 109–142 (2006).
https://doi.org/10.1016/j.tcs.2006.07.034

42. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (Oct 1969). https://doi.org/10.1145/363235.363259

43. Hoare, C.A.R.: Communicating sequential processes. Communications of the
ACM 21(8), 666–677 (Aug 1978). https://doi.org/10.1145/359576.359585

44. Hoare, C.A.R., He, J.: Unifying Theories of Programming. International Series in
Computer Science, Prentice Hall (1998)

https://doi.org/10.1145/503271.503226
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/355604.361591
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1109/85.586068
https://medium.com/a-computer-of-ones-own/margaret-hamilton-coding-to-the-moon-6ba70b7e6b43
https://medium.com/a-computer-of-ones-own/margaret-hamilton-coding-to-the-moon-6ba70b7e6b43
https://doi.org/10.1007/978-1-4612-2704-5
https://doi.org/10.1109/5.97300
https://www.icse2018.org/info/keynotes
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/11560647_5
https://doi.org/10.1016/j.tcs.2006.07.034
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/359576.359585

45. IEEE: SWEBOK V3.0: Software engineering body of knowledge. IEEE Computer
Society (2014), http://www.swebok.org

46. Jackson, M.A.: Principles of Program Design. Academic (1975)
47. Jackson, M.: Software requirements & specifications: A lexicon of practice, prin-

ciples and prejudices. ACM Press/Addison-Wesley Publishing (1995)
48. Jackson, M.: Problem Frames: Analysing and Structuring Software Development

Problems. Addison-Wesley (2001)
49. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verifica-

tion of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems – 18th Inter-
national Conference, TACAS 2012, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24 – April 1, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7214,
pp. 188–203. Springer (2012). https://doi.org/10.1007/978-3-642-28756-5 14

50. Jones, C.B.: Systematic Software Development using VDM. International Series
in Computer Science, Prentice Hall, Upper Saddle River (1990)

51. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphys-
ical systems: A survey. IEEE Systems Journal 9(2) (2014)

52. Kroll, P., Kruchten, P.: The Rational Unified Process Made Easy: A Practitioner’s
Guide to the RUP. Addison-Wesley (2003)

53. Lamport, L.: The temporal logic of actions. ACM Transactions
on Programming Languages and Systems 16(3), 872–923 (1994).
https://doi.org/10.1145/177492.177726

54. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Prentice Hall, Upper Saddle River,
2nd edn. (2001)

55. Larsen, K.G., Pettersson, P., Yi, W.: Diagnostic model-checking for real-time
systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems III:
Verification and Control, Proceedings of the DIMACS/SYCON Workshop on Ver-
ification and Control of Hybrid Systems, October 22–25, 1995, Ruttgers Univer-
sity, New Brunswick, NJ, USA. Lecture Notes in Computer Science, vol. 1066,
pp. 575–586. Springer (1995). https://doi.org/10.1007/BFb0020977

56. Leavens, G.T., Baker, A.L.: Enhancing the pre- and postcondition technique for
more expressive specifications. In: Wing, J.M., Woodcock, J., Davies, J. (eds.)
FM’99 – Formal Methods: World Congress on Formal Methods in Development
of Computer Systems. Lecture Notes in Computer Science, vol. 1709, pp. 1087–
1106. Springer (Sep 1999). https://doi.org/10.1007/3-540-48118-4 8

57. Lee, E.A.: The past, present and future of cyber-physical systems: A focus on
models. Sensors 1(3), 4837–4869 (2015). https://doi.org/10.3390/s150304837

58. Leondes, C.T.: Intelligent Systems: Technology and Applications. CRC Press
(2002)

59. Lindsey, C.H., Boom, H.J.: A modules and separate compila-
tion facility for ALGOL 68. ALGOL Bulletin 43 (Dec 1978).
https://doi.org/10.5555/1061719.1061724

60. Liskov, B., Zilles, S.: Programming with abstract data types. SIGPLAN Notices
9, 50–59 (Mar 1974). https://doi.org/10.1145/942572.807045, in Proceedings of
the ACM SIGPLAN Symposium on Very High Level Languages

61. Liu, Z.: Software development with uml. Technical Report 259, UNU-IIST: In-
ternational Institute for Software Technology, United Nations University, Macau
(2002)

http://www.swebok.org
https://doi.org/10.1007/978-3-642-28756-5_14
https://doi.org/10.1145/177492.177726
https://doi.org/10.1007/BFb0020977
https://doi.org/10.1007/3-540-48118-4_8
https://doi.org/10.3390/s150304837
https://doi.org/10.5555/1061719.1061724
https://doi.org/10.1145/942572.807045

62. Liu, Z.: Fault-tolerant programming by transformations. Ph.D. thesis, University
of Warwick, UK (1991)

63. Liu, Z., Chen, X.: Model-driven design of object and component systems. In: Liu,
Z., Zhang, Z. (eds.) Engineering Trustworthy Software Systems – First Interna-
tional School, SETSS 2014, Chongqing, China, September 8–13, 2014. Tutorial
Lectures. Lecture Notes in Computer Science, vol. 9506, pp. 152–255. Springer
(2014). https://doi.org/10.1007/978-3-319-29628-9 4

64. Liu, Z., He, J., Li, X.: rCOS: Refinement of component and object systems.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) For-
mal Methods for Components and Objects, Third International Symposium,
FMCO 2004, Leiden, The Netherlands, November 2–5, 2004, Revised Lectures.
Lecture Notes in Computer Science, vol. 3657, pp. 183–221. Springer (2004).
https://doi.org/10.1007/11561163 9

65. Liu, Z., He, J., Li, X., Chen, Y.: A relational model for formal object-oriented
requirement analysis in UML. In: Dong, J.S., Woodcock, J. (eds.) Formal Meth-
ods and Software Engineering, 5th International Conference on Formal Engi-
neering Methods, ICFEM 2003, Singapore, November 5–7, 2003, Proceedings.
Lecture Notes in Computer Science, vol. 2885, pp. 641–664. Springer (2003).
https://doi.org/10.1007/b94115

66. Liu, Z., Joseph, M.: Transformation of programs for fault-tolerance. Formal As-
pects of Compututing 4(5), 442–469 (1992). https://doi.org/10.1007/BF01211393

67. Liu, Z., Joseph, M.: Specification and verification of fault-tolerance, timing, and
scheduling. ACM Transactions on Programming Languages and Systems 21(1),
46–89 (1999). https://doi.org/10.1145/314602.314605

68. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed
algorithms. In: Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing (PODC’87). pp. 137–151 (Aug 1987).
https://doi.org/10.1145/41840.41852

69. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems 2, 90–121 (Jan 1980).
https://doi.org/10.1145/357084.357090

70. Manyika, J.: Big data: The next frontier for innovation, competition, and
productivity. http://www.mckinsey.com/insights/business_technology/big_

data_the_next_frontier_for_innovation (2011)
71. Mauchly, J.W.: Preparation of problems for EDVAC-type machines (1947). In:

Randell, B. (ed.) The Origins of Digital Computers. Texts and Monographs in
Computer Science, Springer (1982)

72. McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress.
pp. 21–28. IFIP (1962)

73. Mills, H.: Top-down programming in large systems. In: Ruskin, R. (ed.) Debugging
Techniques in Large Systems. Prentice Hall, Eaglewood Cliffs, NJ (1971)

74. Milner, R.: A Calculus of Communicating Systems. Springer (1980)
75. Naur, P., Randell, B. (eds.): Software Engineering: Report of a Conference Spon-

sored by the NATO Science Committee, Garmisch, Germany, 7–11 Oct. 1968,
Brussels, Scientific Affairs Division, NATO. NATO (Jan 1969)

76. NSF: Workshop on cyber-physical systems, https://cps-vo.org/node/179, Oc-
tober 16–17, 2006, Austin, Texas

77. Nygaard, K., Dahl, O.J.: The development of the SIMULA lan-
guages. ACM SIGPLAN Notices 13(8), 439–480 (Aug 1978).
https://doi.org/10.1145/960118.808391

https://doi.org/10.1007/978-3-319-29628-9_4
https://doi.org/10.1007/11561163_9
https://doi.org/10.1007/b94115
https://doi.org/10.1007/BF01211393
https://doi.org/10.1145/314602.314605
https://doi.org/10.1145/41840.41852
https://doi.org/10.1145/357084.357090
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
https://cps-vo.org/node/179
https://doi.org/10.1145/960118.808391

78. Parnas, D.L.: On the criteria to be used in decomposing systems into
modules. Communications of the ACM 15(12), 1053–1058 (Dec 1972).
https://doi.org/10.1145/361598.361623

79. Parnas, D.L., Madey, J.: Functional decomposition for computer sys-
tems. Science of Computer Programming 25(1), 41–61 (Oct 1995).
https://doi.org/10.1016/0167-6423(95)96871-J

80. Paul, C., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P.,
Nord, R., Stafford, J.: Documenting Software Architectures: Views and Beyond.
Addison-Wesley, Boston, 2nd edn. (2010)

81. Perry, D.E., Wolf, A.L.: Foundations for the study of software architec-
ture. ACM SIGSOFT Software Engineering Notes 17(4), 40–52 (Oct 1992).
https://doi.org/10.1145/141874.141884

82. Petri, C.A., Reisig, W.: Petri net. Scholarpedia 3(4), 6477 (Apr 2008).
https://doi.org/10.4249/scholarpedia.6477

83. Plotkin, G.D.: The origins of structural operational semantics. The
Journal of Logic and Algebraic Programming 60–61, 3–15 (2004).
https://doi.org/10.1016/j.jlap.2004.03.009

84. Pnueli, A.: The temporal logic of programs. In: SFCS ’77: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science. pp. 46–57. IEEE (Sep
1977). https://doi.org/10.1109/SFCS.1977.32

85. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Symposium on Pro-
gramming. Lecture Notes in Computer Science, vol. 137, pp. 337–351. Springer,
Heidelberg (1982). https://doi.org/10.1007/3-540-11494-7 22

86. Randell, B.: System structure for software fault tolerance. IEEE
Transactions on Software Engineering 22, 220–232 (Jun 1975).
https://doi.org/10.1109/TSE.1975.6312842

87. Randell, B.: Position statement: How far have we come? In: Proceedings of the
32nd Annual IEEE International Computer Software and Applications Confer-
ence, COMPSAC 2008, 28 July – 1 August 2008, Turku, Finland. p. 8. IEEE,
IEEE Computer Society (2008). https://doi.org/10.1109/COMPSAC.2008.233

88. Randell, B.: Fifty years of software engineering or the view from Garmisch (2018),
keynote at 40th International Conference on Software Engineering (ICSE 2018),
27 May – 3 June 2018, Gothenburg, Sweden. https://www.icse2018.org/info/
keynotes

89. Randell, B., Buxton, J.N. (eds.): Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, Rome, Italy, 27–31 Oct. 1969, Brus-
sels, Scientific Affairs Division, NATO. NATO (1969)

90. Rausch, A., Reussner, R., Mirandola, R., Plás̆il, F. (eds.): The Common Compo-
nent Modeling Example, Lecture Notes in Computer Science, vol. 5153. Springer
(2008). https://doi.org/10.1007/978-3-540-85289-6

91. Roscoe, A.W.: Theory and Practice of Concurrency. International Series in Com-
puter Science, Prentice Hall, Upper Saddle River (1997)

92. Royce, W.W.: Managing the development of large software sys-
tems. In: Proceedings of IEEE WESCON. pp. 1–9. IEEE (1970).
https://doi.org/10.5555/41765.41801, reprinted in ICSE (1987)

93. Ryckman, G.F.: 17. the IBM 701 computer at the General Motors Research
Laboratories. Annals of the History of Computing 5(12), 210–212 (1983).
https://doi.org/10.1109/MAHC.1983.10026

https://doi.org/10.1145/361598.361623
https://doi.org/10.1016/0167-6423(95)96871-J
https://doi.org/10.1145/141874.141884
https://doi.org/10.4249/scholarpedia.6477
https://doi.org/10.1016/j.jlap.2004.03.009
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1109/TSE.1975.6312842
https://doi.org/10.1109/COMPSAC.2008.233
https://www.icse2018.org/info/keynotes
https://www.icse2018.org/info/keynotes
https://doi.org/10.1007/978-3-540-85289-6
https://doi.org/10.5555/41765.41801
https://doi.org/10.1109/MAHC.1983.10026

94. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein:
Contract-based design for cyber-physical systems. European Journal of Control
18(3), 217–238 (2012). https://doi.org/10.3166/ejc.18.217-238

95. Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages.
Technical Monograph PRG-6, Programming Research Group, Oxford University
(1971)

96. Sommerville, I.: Software Engineering. Pearson, 10th edn. (2016)
97. Spivey, J.M.: The Z Notation: A reference manual. International Series in Com-

puter Science, Prentice Hall, 2nd edn. (1992)
98. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Program-

ming Language Semantics. The MIT Press (1977)
99. Turing, A.M.: Checking a large routine. In: Report of a Conf. on High Speed

Automatic Calculating Machines. pp. 67–69. Cambridge University Mathematical
Laboratory (1949). https://doi.org/10.5555/94938.94952, reprinted in The Early
British Computer Conferences (1989)

100. von Neumann, J.: Introduction to “the first draft report on the ed-
vac”. Archive.org. https://web.archive.org/web/20130314123032/http:

//qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf (1945)
101. Wang, J., Zhan, N., Feng, X., Feng, Liu, Z.: Overview of formal methods. Ruan

Jian Xue Bao / Journal of Software 30(1), 33–61 (2019), in Chinese
102. West, D.: Hermeneutic computer science. Communications of the ACM 40(4)

(Apr 1997). https://doi.org/10.1145/248448.248467
103. Wheeler, D.J.: The use of sub-routines in programmes. In: Proceedings of

the 1952 ACM National Meeting. p. 235. ACM, Pittsburgh, USA (1952).
https://doi.org/10.1145/609784.609816

104. Wilkes, M.V., Wheeler, D.J., Gill, S.: Preparation of Programs for an Electronic
Digital Computer. Addison-Wesley (1951)

105. Wirth, N.: Program development by stepwise refinement. Communications of the
ACM 14(4), 221–227 (Apr 1971). https://doi.org/10.1145/362575.362577

106. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Prac-
tive and experience. ACM Computing Surveys 41(4), 19:1–19:36 (Oct 2009).
https://doi.org/10.1145/1592434.1592436

View publication statsView publication stats

https://doi.org/10.3166/ejc.18.217-238
https://doi.org/10.5555/94938.94952
https://web.archive.org/web/20130314123032/http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
https://web.archive.org/web/20130314123032/http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
https://doi.org/10.1145/248448.248467
https://doi.org/10.1145/609784.609816
https://doi.org/10.1145/362575.362577
https://doi.org/10.1145/1592434.1592436
https://www.researchgate.net/publication/343353942

	Software Abstractions and Human-Cyber-Physical Systems Architecture Modelling
	Introduction
	Software Development is Different from Programming
	A History of Abstractions in Software Engineering
	The motivation and aims of software engineering
	Abstraction in programming and programming languages
	Abstractions in software development

	Software Development Processes and Software Architecture
	Software development process
	Software architecture

	A Review of Formal Methods
	Formal semantics of programming languages
	Formal specification and models
	Formal techniques in software development

	Domain Modelling
	Modelling in general
	Domain processes, concepts, and architecture
	Discrete interactive processes and physical continuous processes

	Traditional Software Requirements Modelling
	Requirements modelling for automation software systems
	Human-cyber-physical pystems – a unified architecture view

	Towards Architecture Modelling of Evolving HCPS
	Evolution from CPS to HCPS
	Engineering formal methods for HCPS development
	Refinement and evolution of HCPS model
	Conceptual integrity and domain system architecture

	Concluding remarks

