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Abstract. The rCOS modeler implements the requirements modelling
phase of a model driven component-based software engineering process.
Components are specified in rCOS, a relational calculus for Refinement
of Component and Object Systems. As an aid to the software engineer,
the modeler helps to separate the different concerns by creating differ-
ent artifacts in the UML model: use cases define a scenario through a
sequence diagram, and methods are given as guarded designs in rCOS.
rCOS interface contracts are specified through state machines with mod-
elling variables. Messages and transitions in the diagrams are labelled
with method invocations.

The modeler checks the consistency of those artifacts through the
process algebra CSP and the model checker FDR2: a scenario must follow
a contract, and an implementation must not deadlock when following the
contract. We illustrate the translation and validation with a case study.

1 Introduction

Software engineering is becoming more complex due to the increasing size and
complexity of software products. Separation of concerns is an effective means to
tackle modelling of complex system. The quality of a system can be improved
by applying formal techniques in different development stages.

In our previous work, we introduced the notion of an integrated specifica-
tion that derives a specification of a component-based system from a UML-like
model for a use case [2]. A use case defines a syntactic interface (the provided
methods) and controller class implementing this interface plus its referenced data
structures, a system sequence diagram involving only a single actor and the com-
ponent that describes the external behaviour, and a state machine describing
the internal behaviour of the component. In the sequence diagram and the state
machine, guarded transitions are labelled with methods from the interface.

Apart from the usual notion of well-definedness (also called static consis-
tency) for an object-oriented design, we require the dynamic consistency of
the specification: the state machine must accept all interaction sequences
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described by the system sequence diagram, and any implementation of the in-
terface must not deadlock if invoked according to the protocol given through the
state machine.

We have implemented the requirements modelling stage of a use case-driven
model-based component development process following the rCOS methodology
in the rCOS modeler. An rCOS model is a UML model extended through the
rCOS UML profile [5]. The tool supports static checking of the dynamic consis-
tency of the model through semi-automated translation into the process algebra
CSP and the model checker FDR2 [19,6].

We define an automated abstraction into ‘flat’ rCOS that only uses primitive
types. The abstraction is further parametrized according to criteria specified by
the user, e.g. to hide method- (and thus message-) arguments/return parameters.
This flat representation is then translated into CSP, which we use to check that
the generated rCOS design follows the protocol by checking the deadlock freedom
of parallel composition of the generated CSP processes.

The paper is organized as follows: Section 2 presents our approach of separa-
tion of concerns including the underlying theory, the used modelling artifacts,
and a brief explanation of integrated specification and checking; we explain the
dynamic consistency checking in Section 3, which contains the translation from
the rCOS model to CSP and the abstraction method used in the translation;
finally, Section 4 concludes.

Related work. Olderog et al. present CSP-OZ, a formal method combining
CSP with the specification Object-Z, with UML modelling and Java implemen-
tations [12]. They use a UML profile to annotate the model with additional data.
Model properties can then be verified on the CSP, and their notion of contracts
of orderings between method invocations through JML and CSPjassda can be
enforced on Java programs at runtime. Their tool Syspect is also built on the
Eclipse Rich Client Platform.

Executable UML [11] introduces a UML profile that gives a suitable semantics
for direct execution to a subset of UML. As such, it focuses on execution and
not formal verification. Use cases and state diagrams are used, procedures are
specified in an action language.

The practicability of generating a PROMELA specification for the Spin model
checker from rCOS has been investigated in [22]. The semantics of the rCOS
(PROMELA) specification is derived from executing the main method. The
model is executed by the model checker for a bounded number of objects and
invariants are checked.

Snook and Butler [20] use B as the underlying theory during the modeling
and design process using UML. The class diagrams and state diagrams in UML
can be translated to a B description, including the function specifications and
guards for operations. They also use a state variable in B to represent tran-
sitions during the translation of a state diagram. The refinement notion in B
supports refinement between different UML models in the development stages.
Ng and Butler discuss a similar translation of UML state machines to CSP in
[14,13].
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Our concern in this paper is checking the consistency of multi-view specifi-
cations. The translation to CSP also extends to the verification of component
composition in the rCOS theory (see [1]).

2 Separation of Concerns

The rCOS language is based on UTP, Unifying Theories of Programming [8],
and is object-oriented. We give here a brief description of its main features. We
refer to [4] for further details.

Method. A method m ∈ Meth is a tuple m = (Name, in, out , g, d) where Name
is the name of the method, in (resp. out) is a set of input parameters together
with their type, g ∈ G is the guard and d ∈ D is the design. A guard is a boolean
expression, which does not contain any primed variable from the post-state, and
cannot refer to parameters of the method. A design could be

– a pre/post-condition pair [p ⊢ R], where p and R are predicates over the
observables,

– a conditional statement d1 ▹ e ◃ d2, where d1 and d2 are designs and e is a
boolean expression,

– a sequence d1; d2, where d1 and d2 are designs,
– a loop ⋆(e, d1), where d1 is a design and e is a boolean expression or
– an atomic command, such as an assignment, a variable declaration, a method

call, skip or chaos.

Interfaces. An interface I ∈ I is a tuple I = (FDec,MDec) where FDec is
the fields declaration section and MDec the method declaration section. Each
signature is of the form (m, in, out), where in are input parameters and out are
the output parameters.

Class. A class c ∈ C is a tuple c = (FDec,MSpec) where FDec is a set of fields
and MSpec ⊆ Meth a set of methods. We assume that we can project onto the
public and private attributes (or methods) of interfaces (and classes respectively)
through I .FDecpub and I .FDecpriv .

Contracts of Interfaces. A contract Ctr = (I , Init ,MSpec,Prot) specifies

– the allowable initial states by the initial condition Init , a predicate over the
attributes in I .

– the synchronization condition g on each declared method and the function-
ality of the method by the specification function MSpec : I .MDec → (G×D)
that assigns each method defined in I to a guarded design g&D.

– Prot is called the protocol and is a set of sequences of call events; each is of
the form ?op1(x1), . . . , ?opk(xk). A protocol can be specified through many
different means, here we will consider protocols generated from sequence
diagrams and state machines.
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UML-based Requirement Specification

The models are defined in the Unified Modeling language (UML), and we apply
Model Driven Development and Architecture (MDD/MDA) techniques [16].

For the modelling part, we use UML models and a UML profile to tie together
the necessary information, e.g. by assigning which specification belongs to a use
case. The specifications are bundled in packages and tagged with stereotypes
from the profile to mark them as belonging to the rCOS modeling domain. The
profile is documented in [5].

The advantage of using UML is three-fold: firstly, we can provide the familiar
modelling notations for the system developer, yet augmented with a rigorous un-
derlying mathematical semantics; secondly, we can reuse the UML meta-model
by using a profile to get an rCOS meta-model, because rCOS intentionally over-
laps with UML; lastly, there are numerous tools and methodologies for UML,
and UML models are the de facto standard models that they create or exchange,
so we can harness their powers to enhance the rCOS tool, e.g. we support import-
ing from the UML tool MagicDraw [15], and also re-used an existing graphical
UML modeler, saving us development effort.

2.1 Example

We use one use case (called ProcessSale) of our recent case study [3] as the
example, which is a trading system based on Larman’s textbook [9], originally
called the Point of Sale (POS) system. The trading system records sales, handles
both cash payments and card payments as well as inventory management. The
system includes hardware components such as computers, bar code scanners,
card readers, printers, and software to run the system. The normal courses of
interactions in the ProcessSale use case are informally described:

1. The cashier sets checkout mode to express check out or normal check out.
2. When a customer comes to the checkout with their items to purchase, the

cashier indicates the system to handle a new sale.
3. The cashier enters each item, either by typing or scanning in the bar code; if

there is more than one of the same item, the cashier can enter the quantity.
The system records each item and its quantity and calculates the subtotal.
When the cash desk is operating in express mode, only a predefined maximum
number of items can be entered.

4. When there are no more items, the cashier indicates to the system end of
entry. The total of the sale is calculated.

5. The customer can pay by cash or credit card. If by cash, the amount received
is entered. In express mode, only cash payment is allowed. After payment,
the inventory of the store is updated and the completed sale is logged.

There are exceptional or alternative courses of interactions, e.g., the entered bar
code is not known in the system. At the requirements level, we capture these
exceptional conditions as preconditions.
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2.2 Integrated Specification

In the requirements modelling stage of software development, each use case is
modelled as a component, with the specification of the contract of its provided
interface containing the interaction protocol, the reactive behaviour, and the
functionalities the methods provided in the interface. The main advantage of
the rCOS methodology is that we can assure consistency of the multi-view spec-
ifications [10], for example by checking trace equivalence or deadlock freedom
of the diagrams. We generate appropriate CSP specifications [3] for the FDR2
model checker [7,6]. While looking at state machines for verification, combining
UML and CSP is certainly not new, cf. [14], but we hope to make state diagrams
more prominent in a formal development process, and we also consider guarded
designs. The overview of the integrated specification and checking is shown in
Fig. 1: the interface serves as the signature of a contract that contains a sequence
diagram for the scenario and the state machine for the protocol. A component
can implement a contract, and a component can be refined. We later discuss the
different operations like generating CSP from the different artifacts, or integrat-
ing the contract with a functionality specification (a class containing the business
logic) into a guarded design that implements the contract. Together with appro-
priate helper functions for abstractions, we can then turn an implementation
into a ‘flat’ rCOS program. We can then use again CSP to verify that the im-
plementation actually follows a contract. This is interesting for implementations
coming from third parties that claim to respect a particular contract.

The component in the contract box aggregates the relevant data like objects,
classes, and their associations taking part in the use case. The data types and
classes are modelled as a class diagram that is derived from the problem de-
scription. We borrow the term “conceptual” class diagram from Larman [9] to
indicate that at this stage, we do not assign visibility to the attributes and as-
sume that they are all public. Also, there are initially no methods except for the

Sequence 
Diagram

State 
Machine

interface component

component

implemented by

CSP CSPconsistent?

generates generates

signature signature integration

deadlocks? CSP

abstraction

is refined by

: transformation : relation : reference

Contract Implementation

Fig. 1. Overview of specification and checking
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controller class implementing the provided interface, and each method of the
controller class can be specified with a guard and the function specification. The
function specification of the enterItem method in the control class CashDesk for
the CashDeskIF contract of the ProcessSale use case is as follows.
public enterItem(Barcode code, int qty ; ) {

VAR LineItem item ;
[ pre : store .catalog. find(c) != null ,

post : line ’ = LineItem.new(c, q) ;
line .subtotal’ = store.catalog. find(c). price ∗ q;

sale . lines .add(line)] ;
[ ⊢ itemCounter’ = itemCounter + 1 ]

}

In rCOS, the notation [p ⊢ R1; R2] stands for [p ⊢ R1]; [true ⊢ R2] and that for
each post-condition, there is an implicit statement leaving all the variables non
concerned by the post-condition unchanged.

For different concerns, the sequence and state diagrams illustrate the inter-
action of the user with the system, which will have to conform to the protocol
in the component contract. We allow only a limited use of the UML sequence
diagram (collaboration) facility: there is only one actor (the user) and one pro-
cess (the system). Messages only flow from the user to the system and represent
invocations of methods in the component interface. We allow the usual control
structures such as iteration and conditional branches in the sequence diagram.
These have controlling expressions in the form of boolean queries or counters.

While the sequence diagram describes the possible interactions with the sys-
tem the user can have, the state machine describes the contract of the provided
interface. Edges in the UML state machine are labelled with an operation of the
interface, which may have the form g & op(x̄; ȳ), indicating that this edge may be

Fig. 2. Sequence Diagram Fig. 3. State Diagram
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triggered by an invocation of method op iff the guarding expression g is evaluated
to be true. We allow nondeterminism by having multiple outgoing edges from
the same state, each labelled with the same method and potentially overlapping
guards for specification purposes, but point it out to the user as potentially un-
desired in the light of a future implementation of the protocol. Choice nodes
with a boolean expression allow if-then-else constructs, or non-deterministic in-
ternal choice (not present in example). The protocol of the CashDeskIF contract
is modelled by the sequence diagram in Fig. 2 and the dynamic flow of control
by the state diagram in Fig. 3.

Naturally, there is a close relation between the trace languages over the
method calls induced by the sequence diagram and the state diagram: the state
machine must at least accept the runs of the sequence diagram. Conversely, the
problem description should specify if the state machine is allowed to offer more
behaviour than the sequence diagram.

3 Verification

For the translation of UML state machines into CSP, we limit ourselves to a
subset of the features available in UML. Some of the limitations are arbitrary
and based on the practical diagrams that we use in the case study. Some obvious
extensions and shorthands are left open as future work.

We only allow a single initial state and plain states, connected by transitions.
State labels do not carry any semantics and are just informative; they may be
used e.g. to generate labels in subsequent stages.

Given a contract Ctr , transitions between states are labelled with an operation
op(x̄; ȳ) ∈ I .MDec from the associated interface I of the contract that have a
‘flat’ guarded design gCtrop & DCtrop . In an integrated specification, the operation
op is mapped to a guarded design gCop & DCop in a class C. The guarding
expression gCtrop may only refer to private attributes of the interface (modelling
variables), and gop only to members of the class. Missing guards are assumed to
be true. We do not use UML’s effects to designate an activity that occurs when a
transition fires, but will instead use the method specification from the contract.

For the translation to CSP, the rCOS guarded designs must be mapped into
CSP. As this is generally hard to automate because some abstraction needs to
be applied, we proposed that this step is done by a verification engineer [10].

We simplify and automate things as much as possible in the tool: for exam-
ple, constructs over integers (or sets thereof) can usually be trivially abstracted
into CSP. We expect that modelers use mostly primitive types in guards of
state machines and sequence diagrams. Also the guarded design derived from an
integrated specification uses integers to identify the current and successor state.

Objects and object references of course pose a problem, since CSP has no
concept of object orientation. Thus objects and any use of navigation in com-
plex expressions must be broken down. Since we can handle ‘flat’ rCOS, that
only uses primitive types, more easily as described above, we solve the problem by
allowing the verification engineer to define an abstraction function
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α : rCOS → rCOS . α should preserve the refinement relation, that is formally in
rCOS, ∀m ∈ rCOS : m ⊑ α(m). That way, we translate an object oriented rCOS
specification into CSP by going through an intermediate step where the verifica-
tion engineer applies the abstraction function (in this case from object-oriented
to ‘flat’ rCOS), from which we then generate the CSP. We intend to provide a
library of abstractions, for example, only considering object identifiers (again in
the form of integer values) for objects, and for common types like sets and bags.
For the latter, there can be different granularity, like only considering if such
a structure is empty or if it may be full in a three-valued abstraction. Another
simple abstraction is hiding variables. Since the result has to be another valid
rCOS specification, all expressions referring to the now hidden variables have to
be properly abstracted as well. Currently it is the responsibility of the user to
consider the implications of his chosen abstraction with regard to soundness and
completeness of any property of the abstracted model, and the impact on the
size of the state space of the model.

Let Csp denote a syntactically and statically valid CSP specification consisting
of a set of process definitions. We consider now contracts in CtrSM , that are
contracts for which the protocol is defined by a state machine sm = ⟨i : V, S :
2V, trans : 2(V×MName×V)⟩, where trans ⊆ (S × MName × S) is the relation
defining transitions between states and operations of the interface.

We define the translation function for a contract csp : Ctr → Csp by
following the outgoing transitions from the initial state of the state machine
(denoted in the following by Ctr .sm). This also eliminates unreachable parts.
Whether we chose a breadth-first or depth-first strategy does not matter. cspsm :
V → Csp recursively translates all outgoing transitions of a state. We map each
state in the state machine (italic s, t, . . .) to a CSP process (typewriter s,t,. . .)
using unique names. We remind the reader that these are variables and thus
placeholders for the identifier of a state or process.

Also, we need to consider that we need slightly different translations depend-
ing on the target mode of our translation: at least the state machine may be in
the role of specification or implementation (sequence diagram vs. state machine,
state machine vs. implementation, two implementations against each other). The
specification is always translated using internal choice, while the implementation
uses external choice for call-ins. Therefore, we use in the definitions below the
choice operator

∏
to indicate that we choose angelic or demonic behaviour de-

pending on the context we use the translation in. Thus we have:

csp : CtrSM → Csp
csp(Ctr ) = PInit ∪ cspsm(Ctr .sm.i),

PInit =
∏

c̄ ∈Ctr .Init(Ctr .I .FDecpriv )

smi(c̄) (non-deterministic initialisation
of I .FDecpriv )

where PInit is a CSP process invoking the process corresponding to the initial
state smi with given values c̄ as per the specification if I .init from the interface
for the formal parameters st = I .FDec, and
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cspsm : V → Csp

cspsm(s) = s(st) ∪
⋃

t∈ts

cspsm(t.t) (translation of transitive closure)

s(st) = csptrans (ts, ∅) (a process for each state)
ts = {⟨s, m, t⟩ | ⟨s, m, t⟩ ∈ sm.trans} (outgoing transitions of s).

In the translation of the outgoing transitions in csptrans , we choose a translation
that returns a single CSP process definition and handles both kinds of choice:
as specification, we are allowed to call any method enabled by the protocol (in-
ternal choice), as implementation we have to accept every path the environment
exercises (external choice). Guards have to be handled specially when trans-
lating with internal choice. The specification must only chose enabled courses
of interaction, thus we turn each guard into an if-then-else over the guarding
expression. A specification may still deadlock if no branch is enabled. The recur-
sive construction below collects all enabled transitions in the specification and
implementation and allows them to chose any enabled transition:

csptrans (ts, ps) =⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cspval(m.g) & csp(⟨s, m, t⟩) iff ts = {⟨s, m, t⟩}, ps = ∅
(csp(⟨s, m, t⟩)

∏
ps)▹cspval(m.g) ◃ (

∏
ps) iff ts={⟨s, m, t⟩}, ps ̸=∅

csptrans (ts\{t}, ps∪ {csp(⟨s, m, t⟩)}) ▹ cspval(m.g) ◃ csptrans (ts\{t}, ps),
t ∈ ts, otherwise (push choice into branches).

The function cspval for translating integer and boolean operations into CSP is
omitted, since we do not handle navigation paths and method calls as we assume
‘flat’ rCOS as input. We only allow simple boolean and integer operations (and
finite sets thereof). We do not consider the degenerate case of a contract without
any methods. For csp(⟨s, m, t⟩), we handle the translation of a transition to a
regular state in CSP:

csp(⟨s, m, t⟩) = call m?x̄ → cspm

(
m, ret m!c̄ → t(st)

)

We split the call and return of a method m into two different events call m and
ret m, so that the environment can synchronize on them. The return values
c̄ in the output event must be valid expressions over variables in the formal
parameters st plus any locally declared variables. The process t is created by the
previous definition of cspsm since we translate all states in the transitive closure.
Again choice resolves the non-determinism if there is more than one successor
state (consider e.g. the predicate exmode=true ⊓ exmode=false which allows
progress with either of the values). Likewise, cspval(m.g) is the abstraction of an
rCOS guard into CSP. In case of a deterministic post -mapping through cspm()
below, it degenerates into a single branch.

The declaration of the CSP channels for events call m and ret m requires
the mapping of ‘flat’ rCOS types of input and output/return parameters to CSP
data types (currently only integers and boolean, for objects and set-like data
structures see future work).
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We define the translation of a sequential composition of designs mixed with
CSP expressions, assuming right-associativity of the operator to simplify the
rules: d1; d2; d3, . . . = d1; (d2; (d3; (. . .) . . .)). We convert an imperative program
with assignments into a functional style, where de is the continuation that has
to be executed/translated at the end of a sequence:

cspm(d, de) = match d with
| skip −→ cspm(de, skip) if de ̸= skip,

skip else (end of translation branch)
| d1; d2 −→ cspm(d1, d2; de)
| Var T x; dv; End x −→ cspm(dv, skip); cspm(de, skip)

(assignments introduce new scope)
| x := e −→

∏

x∈cspval(e)

cspm(de, skip) (new scope for x)

| ⋆(e, d1) −→ W(st), where W is a fresh process name,
W(st) = cspm(d1, W(st)) ▹ cspval (e) ◃ cspm(de, skip)

| [p ⊢ R] −→ cspm(R, de) ▹ cspval(p) ◃ STOP
| d1 ▹ e ◃ d2 −→ cspm(d1, de) ▹ cspval(e) ◃ cspm(d2, de)
| d1 ⊓ d2 −→ cspm(d1, de)

∏
cspm(d2, de)

| chaos −→ CHAOS
| csp −→ csp; cspm(de, skip) (any CSP process)

The translation of contracts in CtrSeqD , contracts whose protocol is defined as a
sequence diagram, is done by the function csp : CtrSeqD → Csp, which proceeds
in a similar manner and exercises the same syntactical features of rCOS.

Verification of consistency and implementation. As we have shown in
Fig. 1, we can now verify by using the FDR2 model checker that given a state
machine sm and contract CtrSM = (I , Init ,MSpec, sm) and given a sequence
diagram and a contract CtrSeqD = (I , Init ,MSpec, seqd), we have csp(CtrSeqD) ∥

M

csp(CtrSM ) is deadlock free, in which M is the set of generated CSP events (the
method calls), that is, the traces specified in the sequence diagram are accepted
by the state machine.

Before we can consider verifying an implementation against a contract, we
discuss an abstraction framework that can be used to get a suitable over-approx-
imation of an rCOS class into ‘flat’ rCOS that can be translated into CSP.

Integration. In [2], we describe how we integrate the state machine with a
class containing the functionality specification to obtain a guarded design that
we summarize in the following. We introduce a new variable state that holds
a symbolic representation of the state that execution is currently in. Then, for
each operation m we add a guard that only accepts the call-in into the method if
we are in a state that has an outgoing transition labeled with m. Any additional
guards on the transition (in the example the test itemCounter < max) or on
the design of m need to be respected as well. In the body, we update the state
variable to the successor state.
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We do not repeat the formalisation in [2] here, but rather use the example to
illustrate the effect on the enterItem method. By integrating the class with the
contract as given through the state machine we obtain:
public enterItem(Barcode code, int qty ; ) {

(( state = 13928840) ∨ (state = 9528594) ∨ (state = 14696984) ∨
((itemCounter < max) ∧ (state = 4957896))) &
VAR LineItem item ;
[ pre : store .catalog. find(c) != null ,

post : line ’ = LineItem.new(c, q) ;
line .subtotal’ = store.catalog. find(c). price ∗ q;

sale . lines .add(line)] ;
[ ⊢ itemCounter’ = itemCounter + 1 ] ;
if (state = 13928840) then {[ ⊢ state ’ = 9528594]}
else { if (state = 9528594) then {[ ⊢ state ’ = 9528594]}

else { if (state = 14696984) then {[ ⊢ state ’ = 4957896]}
else { if (state = 4957896) then {[ ⊢ state ’ = 4957896]}

else { skip /∗ not reached ∗/}}}}}

The state identifiers have been automatically generated. Observe how enterItem

has been used on four transitions, where one of them held the additional guard.
Formally, we denote this integration of a contract and a class by integrate(Ctr ,C)
(compare with Fig. 1 again).

The Abstraction Process

In order to translate an rCOS specification to a CSP process, it may be necessary
to abstract some parts of the designs. Indeed, a design usually contains functional
specifications, which may not be relevant to the conformance to the protocol.

The design for enterItem(Barcode code, int qty) above contains informa-
tion concerning both the protocol and the functional specification. Indeed, the
variable item and the first pre/post-condition (checking if the code is in the
store catalog and adding the item to the sale) have no concern with the proto-
col. It is then possible to ‘remove’ the statements related to item, or, in other
words, to keep only those related to the variables concerned with the proto-
col, which are itemCounter, state and max for enterItem. Moreover, in the
perspective of a ‘flat’ rCOS, all references to object with navigation paths (i.e.
x.y where x ̸= this) should also be removed. We first introduce the function
µ : Exp × 2VAR → B, which indicates if an expression should be kept or not:

µ(e, l) = match e with
| const → true
| x → true if x ∈ l
| x → false if x ̸∈ l
| path.x → true if x ∈ l ∧ path = this
| path.x → false if x ̸∈ l ∨ path ̸= this
| ¬e1 → µ(e1, l)
| e1 op e2 → µ(e1, l) ∧ µ(e2, l) (where op ∈ {∧,∨, =, ̸=, +,−, /, ∗})
| m(in; out) → false

The abstraction process is an over-approximation, so every entity should refine
its abstraction. We introduce the function αp : Pred × 2VAR → Pred which
abstracts every non atomic expression to true.
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The designs are abstracted by the function αk : D × 2VAR → D :

αk(d, l) = match d with
| [p ⊢ R] → [αp(p, l) ⊢ αp(R, l)]
| d1 ▹ e ◃ d2 → αk(d1, l) ▹ e ◃ αk(d2, l) if µ(e, l)
| d1 ▹ e ◃ d2 → αk(d1, l) ⊓ αk(d2, l) if ¬µ(e, l)
| d1 ⊓ d2 → αk(d1, l) ⊓ αk(d2, l)
| d1; d2 → αk(d1, l); αk(d2, l)
| ⋆(e, d1) → ⋆(e, αk(d1, l)) if µ(e, l)
| ⋆(e, d1) → Var bool b; (b := true ⊓ b := false);

⋆(b, αk(d1, l); (b := false ⊓ b := true)) if ¬µ(e, l)
| x := e → x := e if x ∈ l ∧ µ(e, l)
| x := e → skip if x ̸∈ l ∨ ¬µ(e, l)
| path.x := e → x := e if x ∈ l ∧ µ(e, l) ∧ path= this
| path.x := e → skip if x ̸∈ l ∨ ¬µ(e, l) ∨ path ̸= this
| Var T x → Var T x if x ∈ l
| Var T x → skip if x ̸∈ l
| m(in, out) → skip
| skip,chaos → skip,chaos

This function removes every statement not only composed with variables given
as a parameter and atomic expressions. Note that the conditional statement is
asbtracted as a non deterministic choice if the condition is not atomic. In the
same way, if the condition of a loop is not atomic, a new boolean variable b is
introduced, and the design of the loop is extended to let the choice to set b to
true or to false.

We extend the abstraction αk to methods with the function αm : Meth ×
2VAR → Meth which, given a method and a list of variables, returns the method
with the corresponding abstracted design.

Since the above design does not contain any reference to code or qty, we
can create a new method by removing these parameters from enterItem. This
abstraction is done by the function αpar : Meth × 2VAR → Meth, defined by:

αpar((Name, in, out , g, d), l) = (Name, in ′, out ′, g, d)

with in ′ = in \ (l \FV (D)), out ′ = out \ (l \FV (D)) and FV (D) stands for the
free variables in D. Note by removing only (l \ FV (D)), we ensure to remove
only unused parameters. The functions αk and αpar can be composed to define
the function α : Meth × 2VAR → Meth:

α((Name , in, out , g, d), l) = αpar(αm((Name, in , out , g, d), l), in ∪ out)

The method enterItem can be abstracted by α, by keeping only the variables
itemCounter, state and max:
α(enterItem, {itemCounter, state, max}) = public enterItem() {

(( state = 13928840) ∨ (state = 9528594) ∨ (state = 14696984) ∨
((itemCounter < max) ∧ (state = 4957896))) &
[ ⊢ itemCounter’ = itemCounter + 1 ] ;
if (state = 13928840) then {[ ⊢ state ’ = 9528594]}
else { if (state = 9528594) then {[ ⊢ state ’ = 9528594]}
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else { if (state = 14696984) then {[ ⊢ state ’ = 4957896]}
else { if (state = 4957896) then {[ ⊢ state ’ = 4957896]}

else { skip /∗ not reached ∗/}}}}}

Finally, we introduce the function αC : C × 2FDec → C which abstracts all
the methods of a given class: αC((FDec,MDec), l) = (l, {α(m, l) | m ∈ MDec}),
(abstraction w.r.t. variables in l).

Now we are in a position to show that the integrated class still follows a
contract: we first calculate the integrated specification from the contract Ctr ∈
CtrSM and the implementation C, apply the appropriate abstraction function
with respect to the interface to obtain a new flat rCOS specification impl . Then,
we translate the abstracted methods into CSP and create a process that accepts
a call to a method based on the current state through external choice, updates
its state variables and starts over:

implCtr ,C = αC(integrate(Ctr ,C),Ctr .I .FDecpriv)
PC(state, st) =

!

m∈impl.MSpec

csp(m, PC((state, st)))

We also need an initial process to start execution and have to state the initial
state (derived from the state machine) and the initial values for the remaining
attributes which are given in the contract, that is:

InitC =
∏ {(∏

{P(i, st) | st ∈ Ctr .Init(Ctr .I .FDec)}
)
| i ∈ Ctr .sm.i

}

Then we check the trace refinement property of impl against csp(Ctr). While the
CSP generated from the contract (state machine) consists of a process for each
state and a single method call can occur in various places, the overall structure
of the CSP for the integrated specification is a single process allowing external
choice over all possible guarded method calls, after which it will return to its
main process again.

We could also apply the CSP translation of a whole class to an implementation
we received from a third party to validate that it respects the contract, provided
that we can find a suitable abstraction function.

4 Conclusion

We integrate the power of consistent UML modelling with the application of
formal methods: a requirements model of a use case based on the rCOS method-
ology consists of hierarchical components, a protocol for an interface contract
given as a state machine, the scenario to implement in the form of a sequence
diagram, and the functionality specification in rCOS. Specification of behaviour
in rCOS usually considers trace languages of method invocations instead of data.

The state machines and sequence diagrams can make use of the non-object
oriented subset of rCOS designs, that we call ‘flat’ rCOS, for the functionality
specification of operations. This seems like a very strong restriction in the age of
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object-oriented or even component-based development. But we show based on
our example from the recent CoCoME [18] case study for a component-based
point-of-sale system that this approach is already sufficient to ensure consis-
tency of the specification between the sequence diagram and the state machine,
and the state machine and an implementation (for example, it successfully de-
tects an accidental inconsistency between an older version of the diagrams in
[4]). We translate the artifacts into the process algebra CSP and use the model
checker FDR2 to check the deadlock freedom. From our limited experience, as
any counter example is a sequence of method invocations, it is easy to debug the
model with regard to that particular trace. To get from a fully object-oriented
rCOS specification of a class to ‘flat’ rCOS that is suitable for translation to
CSP, the user employs a set of abstraction functions, like projection of a class
onto a subset of its attributes.

As an illustration, we apply the technique from [2] to obtain an integrated
specification in the form of a complete guarded design from the model and check
it against the state machine.

We have implemented the rCOS modeler on top of the Eclipse Rich Client
platform that can be used to graphically design a requirements model [5] and
run the above transformation. Next, we intend to provide different abstractions
for sets (e.g. precise, two- or three-valued) and for object instantiation.

In the larger scope, we plan semi-automated model transformation from a
requirements model to a design- and component-model [21], proof support for
refinement and abstractions, and code generation to provide an integrated soft-
ware engineering solution for use case-driven models.

The Eclipse plugin of the rCOS modeler and the model used in this paper are
freely available from http://rcos.iist.unu.edu.
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