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Abstract—Integrating formal methods into UML opens up
a way to complement UML-based software development with
precise semantics, development methodologies, as well as rigorous
verification and refinement techniques. In this paper, we present
an approach to integrate a formal method to practical component-
based model driven development through defining a UML profile
that maps the concepts of the formal method as UML stereotypes,
and implementing the profile into a CASE tool. Unlike most of
the previous works in this vein, which concentrate on verifying
the correctness of the models built in the development process,
we focus on how the full development process can be driven
by applying the refinement rules of the formal method in an
incremental and interactive manner. The formal method we adopt
in this work is the refinement for Component and Object Systems
(rCOS). We demonstrate the development activities in the CASE
tool using an example.

Keywords—Model-driven development, component-based mod-
eling, UML profile, formal methods, rCOS

I. INTRODUCTION

Nowadays, the demand for building more complex and
higher quality software systems is increasing, that has led
to an urgent need for new languages, methods, and tools.
Component-based development (CBD) and model driven de-
velopment (MDD) are two of the most important and promising
paradigms to deal with the demand. MDD promotes the use
of models and model transformations for developing software
systems. It supports the principle of separation of concerns
that allows us to include in each view only the information
which is relevant to the immediate purpose. On the other
hand, CBD emphasizes on decoupling a system into partially
independent and reusable modules - components. A system
can be built by gathering together various components, each
may have separate concerns and offer different functionalities.
Combining the advantages of both techniques, component-
based model driven development (CB-MDD) is regarded as
an effective way to develop complex systems [1].

As a widely accepted standard modeling language, UML
[2] provides a certain degree of support for both MDD and
CBD. In order to specify a model from different views,
UML defines thirteen types of diagrams which are divided
into three categories: representing static structure, behavior
and interaction. With the help of component diagrams and
a number of modeling constructs, such as connector, port
and required/provided interface, UML provides a semi-formal
means for specifying components, their composition and de-
ployment. But from a practical point of view, the lack of a

precise semantics, numerous different modeling concepts, and
lack of a development methodology make applying the "pure"
UML for MDD and CBD difficult in software engineering [3].
The best known MDD initiative, OMG’s Model-Driven

Architecture (MDA) [4], proposed a set of standards for model-
based development. MDA suggests a development strategy
that focuses on separately defining models for the application
domains (PIMs, Platform Independent Models) and models
about platform specific techniques (PSMs, Platform Specific
Models), and combining the two kinds of models together
to build platform specific models or implementations using
model transformations. However, MDA also lacks a systematic
methodology about how to develop a complete and consistent
PIM. In addition, other development methods, such as the
Rational Unified Process (RUP), provide guidance for the
developers to follow in software design, but the development
activities and steps are in general not concrete and fine-
grained enough. This brings difficulty to the automation the
development process.
MDD and CBD need sound theoretical foundations and

strong methodology and tool supports. This challenge lies in
that the semantic theory must support separation of concerns
to allow us to factor the system model into models of different
views and to consistently integrate models together under an
execution semantics of the whole system. The models are
required to be maintainable and verifiable [5]. We also need
a systematic development methodology which covers the full
evolution process of models, manipulating at, and within, all
levels, from requirements through architecture and design, to
executable programs. More importantly, the theory and the
methodology should be practical enough to be automated into
tool supports. In this regard, the use of formal methods, with
their rigorous mathematical foundations for system specifica-
tion, verification and refinement, could be much help to address
these challenges.
Integrating formal methods into UML opens up a powerful

approach to support MDD and CBD. A formal method can
supply UML with a precise semantics, and formal consis-
tency verification and refinement techniques. For the formal
method’s side, the advantage of combining with UML is the
possibility to specify a system with a unified, standardized
graphical notation, and to exploit many available UML tools
for saving development effort and time. Thus some inherent
shortcomings of formal methods, such as the complexity
of the notations, the mathematical background required for
comprehending the formal background, and the lack of easy-
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to-use tools, can be efficiently overcome. Formal methods
could therefore potentially reach a wider user-base.

Many works have been done on the integration of formal
methods and UML to support MDD [6]–[8]. Most of them
focus on translating the multiple views of a model into a formal
specification, thus the formal semantics of the model is defined,
and existing analysis tools of the formal language, such as
type-checkers, theorem provers, and model checkers, can be
used to prove the correctness of the model. However, how
to systematically support the development process of MDD
using the development methodologies and refinement rules of
the formal methods, and how to automate the development
process, are not the focus of these works.

In this paper, we present an approach to integrate a formal
method, the refinement for Component and Object Systems
(rCOS) [5], [9], [10], into UML to support MDD and CDB. We
focus on how the full development process can be supported
in an incremental and interactive manner though applying
the rCOS refinement rules, and how the object-oriented and
component-based techniques can be seamlessly combined and
used in the development process. To integrate rCOS and UML,
we adopt the standard strategy of customizing UML using
its built-in extension mechanism by defining a UML profile,
which describes how UML model elements are extended to
support usage in a particular modeling method. We have im-
plemented the profile in a CASE tool, through which the rCOS
techniques and methodology can be applied to component-
based software development in a standard, model-driven way.

The remainder of the paper is organized as follows. We
briefly introduce rCOS major concepts using a metamodel in
Section II. Based on this, Section III presents a UML profile
for rCOS and its implementation in a CASE tool. Section IV
discusses how the development process is supported by the
tool using an example. We mention some related work and
outline the conclusions in Section V.

II. BASIC CONCEPTS OF RCOS

rCOS provides a notion and an integrated semantic theory
to support separation of concerns, and allows us to factor a
system into models of different viewpoints, including static
structure, interactions and functionalities, and ensure the con-
sistency among them [9]. The formal semantics is founded
on an extension of UTP [11], with a modeling notation with a
verification and refinement calculus. For modeling component-
based architectures, rCOS defines operators for connecting
components, and constructs for defining glue processes.

In addition, rCOS follows a use-case driven, incremental
and iterative development methodology that combines object-
oriented and component-based design and analysis techniques.
The development process goes through the stages of require-
ments elicitation, object-oriented design, logical component-
based design, and through to coding. The rCOS method pro-
motes the idea that component-based software design is driven
by model transformations in the front end, and verification
and analysis are integrated through model transformations.
The main advantage of the rCOS methodology is that we can
ensure consistency of the multi-view specifications at different
abstract levels [9].

The theoretic background of rCOS has been well-studied in
literature such as [5], [9], [10], [12], [13]. Here we discuss only
the major concepts and features of the rCOS language using
a Meta Object Facility (MOF) compliant metamodel, so as to
facilitate the definition of the rCOS profile. The description
mainly focuses on the syntactic aspects.
A metamodel is a mechanism for defining model concepts,

their relationship and constraints, in a comprehensive way.
The rCOS metamodel consists of four packages: Type, Class,
Component and RCOSP. The latter three ones have dependencies
on the Type package. The RCOSP package defines the abstract
syntax of the specification language, which can be used to
specify the rCOS models and method bodies textually. Some
concepts, such as Design, Expression, Command and Predi-
cate, are defined in the package. Because of space limitations,
we will not discuss the RCOSP package in this paper.

A. Types and classes of rCOS
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Fig. 1. Class package of rCOS

The Type package comprises data types used in rCOS. A
type may be a class (derived from UML), which is the type
of an object in a system, or may be a primitive type, such
as boolean, integer, or string. A collective type, such as Set,
is a collection of elements whose type is already defined in
the package. For example, Set(T) is the type of sets of type
T. We define a set of operations, such as add, contains and
remove for the collective type with their standard semantics.
Moreover, like most OO program languages, rCOS has its class
model with the notions of classes, associations or attributes,
and single inheritance, to represent the application domain
concepts. Fig. 1 depicts the rCOS class metamodel.

B. Components in rCOS
The component package, as shown in Fig. 2, defines the

component-based modeling concepts of rCOS, again borrow-
ing from UML. An rCOS interface, which is a syntactic notion
providing an interaction point for a component, is a declaration
of a set of fields and methods. In addition, an interaction
protocol of the interface is a set of finite traces over the events
of method calls. In principle, regular expressions, finite state
machines, or CSP processes can be used to describe the traces.
The protocol defines the permissible sequences of method
invocations for the environment to follow when interacting
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Fig. 2. Component package of rCOS

with the interface. Moreover, the initial predicate specifies the
allowable initial states of the interface.
A component may provide the clients with services that

are defined by the provided interfaces. The component is
responsible for implementing its provided interfaces, either
by the component itself or through some (interface) classes.
On the other side, a component may need to use the services
provided by other components. These services are called
required services and are represented as required interfaces.
Obviously, the required protocol is determined by the protocol
of the provided interfaces.
In rCOS, there are two kinds of components. A service

component, component for short, has provided interfaces, and
optionally required interfaces. It is externally passive and only
interacts with the outside when a provided service is requested.
On the other hand, a process component, process for short,
is active and has its own control thread. A process only has
required interfaces and it actively invokes services of other
components.
The notion of component composition is essential for

component-based design. In rCOS, we define the basic com-
position operators for renaming interface methods, hiding
interface methods, plugging a provided interface of one com-
ponent to a required interface of another component, and
parallel composition of components. For the semantics of these
operators, we refer the reader to [9], [13].

C. The rCOS refinement calculus
The development process of rCOS methodology is driven

by applying rules of a well-studied refinement calculus, which
includes a set of algebraic laws expressed as equations of OO
programs under the UTP semantics [12], and a set of refac-
toring rules of graph transformations for structure refinement
[14]. The soundness and relative completeness of these rules
have been proven [9]. In addition, the rules proposed in [15]
provide an elegant approach to abstract OO design models into
component-based models.
The use of design patterns [16], [17] makes rCOS refine-

ment more systematic and thus has much higher possibility
for automation. Particularly, the expert pattern [17] is repeat-
edly applied to the OO design models, and to decompose
the data functionality of a method into interactions of the
related objects, called information experts, which maintain or
know the information for carrying out parts of the method’s

responsibilities [5]. Other patterns, such as high cohesion, low
coupling, and the refactoring rules, are used to optimize the
structure of the design models through introducing new classes,
decomposing existing classes, adding or moving attributes of
classes.

III. A UML PROFILE FOR RCOS
A. UML profiles
UML profiles provide a standard mechanism to customize

and extend UML. The main concept of extension is the
stereotype. A stereotype defines a new model element based
on an existing UML model element, and provides it with
additional attributes and their values (tagged values), additional
constraints, and optionally a new graphical representation. The
semantics defined for a stereotype must not contradict the
semantics of the base model element. As we know UML
contains too many model concepts and elements. A profile
cannot remove existing model elements and their constraints,
but it can tailor UML to allow only the required model
elements for the application domain to be visible. Actually,
a UML profile is a UML package dedicated to group the
extensions: stereotypes, tagged values, constraints defining
well-formedness rules, icons representing the stereotypes, etc.
Currently, there is no standard approach to define a UML

profile for a specific domain. Several authors [18], [19] have
proposed a set of steps for the creation of a profile. Based on
their approaches, we adopt the following procedure to define
our profile: 1) define the domain metamodel; 2) design the
structure of the profile; 3) define stereotypes; 4) define well-
formedness constraints, and 5) provide tool support.

B. Mapping rCOS concepts to UML
As rCOS is a language for object-oriented and component-

based systems, by design it shares a lot of features with
UML. To define the rCOS profile, we first go through the full
set of rCOS concepts, and identify the most suitable UML
model elements as their base metaclasses. In fact, many rCOS
concepts can be represented by UML model elements without
changing their original semantics, at most imposing some
additional constraints. For these rCOS concepts, we directly
use UML model elements without introducing stereotypes.
Fig. 3 illustrates the mapping from rCOS concepts (below the
dashed line) to UML metaclasses. The mapping is intuitive and
straightforward, and we are going to discuss the corresponding
stereotypes later in this section. For many of the UML concepts
mentioned here, analogous description may be extracted from
the OMG UML specification [2].

C. The rCOS modeling architecture
Fig. 4 depicts the overall structure of an rCOS model. We

introduce the stereotype «RCOSModel» extending from UML
model to represent the root of an rCOS model, and we define
the stereotypes «ClassModel», «UsecaseModel» and «Compo-
nentModel», all as extensions of UML package. Thus an rCOS
model consists of three sub-models to specify different aspects
of a system:

• Use case model, contains all actors, use cases and
their relationships, along with a use case diagram.
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Fig. 3. Mapping from rCOS concepts to UML
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Fig. 4. Overall structure of rCOS model

Here we define the stereotype «RCOSUseCase», and
each of the use case is implemented by an rCOS
component.

• Class model, contains all class definitions and their
relationships, represented as a set of class diagrams.
Here we define stereotype «DesignOperation» as an
extension of UML operation to represent an rCOS
method. A textual constraint is introduced with the
name design to specify the data functionality of the
method body.

• Component model, contains a collection of compo-
nents and their interfaces. It also includes component
diagrams to describe the relationships between com-
ponents, and sequence diagrams and state diagrams to
specify the behaviors of the components.

D. Component modeling

In rCOS, several components can be composed to a larger
component, and a component can be decomposed into a
composition of a set of internal components within it. In order
to encode rCOS component and composition in a compact way
while supporting the semantics of rCOS, we define the rCOS
component model, as shown in the UML profile diagram of
Fig. 5, which includes:

• ContractInterface: Mapped from rCOS interface, a
contract interface provides an interaction point for a
component, and defines the static portion such as fields
and methods. A contract interface has a protocol that
specifies the traces of invocations to the methods of
the interface.
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Fig. 5. Modeling rCOS component

• Protocol: A protocol is a UML package that contains
a state machine, a collaboration and a set of call
events. A call event is an invocation to an operation
of the contract interface, resulting in the execution of
the called operation. As UML behavior state machine
is too complex and not suitable here, we adopt the
UML protocol state machine to represent the reactive
behavior of the interface, and each transition of the
PSM is trigged by an event in the set of call events.
Especially, here a UML collaboration owns a UML
interaction defined as an RCOSSequenceDiagram.
However, as both a state machine and a sequence
diagram are used to describe the dynamic behaviors
of the same entity, we must ensure the consistency of
them.

• RCOSComponent : We map an rCOS component to the
abstract stereotype «RCOSComponent» as an extension
of UML meta-class component, and we define the
stereotypes «ServiceComponent» and «ProcessCompo-
nent» to represent the two kinds of component in
rCOS. A component itself may also have an rCOS
sequence diagram to specify the interactions between
its internal sub-components.

In the component model, we realize the connection between
a component and its provided interface using a UML in-
terface realization. A UML usage, a specialized dependency
relationship, is used to link a required interface to its owner
component.
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1) Component composition: As shown in Fig. 6, extended
from UML dependency, we define two stereotypes «Composi-
tion» and «Delegation» to support the following two kinds of
component compositions:

• Horizontal assembly: A provided interface from one
component is plugged to a required interface of an-
other component using a «Composition». The requests
from the required interface are passed to the provided
interface. The two components are composed at the
same level of the hierarchical structure.

• Hierarchical assembly: If a component has internal
sub-components, we use UML port as the interaction
points to the internal parts. Using the stereotype
«Delegation», an interface of a sub-component can
be associated to a port of the container component.
A request to the provided interface of the owning
component reaches the port first, and then forwards
to a provided interface of a sub-component. Requests
originating from a sub-component pass through its
required interface to a port of the owning component,
and then pass to the required interface of the owning
component. The composition process can reach arbi-
trary depth.

In both cases, the composability between the components must
be checked to ensure the static (types) and dynamic (behavior)
correctness of the composition according to the semantics
defined in [9].
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Fig. 6. Realizing component composition

2) Component realization: Realization of a component
means the realization of the services provided by the compo-
nent through its provided interfaces. For a component that does
not own any sub-component (called atomic component), its
provided interface is realized by the controller class (use case
controller, defined as stereotype «ControllerClass» in Fig. 5) of
the interface. A controller class is a special class that initializes
a system, creates permanent objects, and maintains the main
flow of control of the system. On the other side, for a composed
component, all requests will be forwarded and realized by
the provided interfaces of the internal sub-components. Each
method call is processed according to the run-to-completion
semantics. Only one method call is processed at a time.

E. The rCOS sequence diagram
In order to combine both OO design and component-based

design, rCOS has defined two kinds of sequence diagrams,
object sequence diagrams and component sequence diagrams,

which are shown in Fig. 7 as two subtypes of abstract stereo-
type «RCOSSequenceDiagram». An object sequence diagram
has only one lifeline representing an actor, and all other
lifelines represent objects or (interfaces of) components, and its
messages are synchronous calls to an operation provided by the
type of the target lifeline, or constructor/create messages. Here
the actor could be the use case actor, or other external role that
interacts with the system described by the sequence diagram.
For a component sequence diagram, all lifelines, except the one
representing the actor, represent (interfaces of) components,
and each message is a method call to an operation defined
in the provided interface of the component represented by the
target lifeline. For more discussion about the rCOS sequence
diagrams, we refer to [15].

<<stereotype>>

ComponentSequenceDiagram

<<stereotype>>

ObjectSequenceDiagram

<<stereotype>>

RCOSSequenceDiagram

InteractionMessage
Lifeline

message

1..*

lifeline

2..*

Fig. 7. rCOS sequence diagram

F. Specify profile constraints

An important part of a profile is static semantics that
defines the well-formedness constraints. These rules are used
to automatically check the well-formedness and the structural
consistency of a model. The constraints are typically specified
by OCL. This allows validating the models against these
constraints automatically.

All these constraints can be divided into two categories:
profile conformance constraints, that require a model conform-
ing to the profile, and model consistency constraints, where
different viewpoints of a model must be mutually consistent.
One simple example of a model consistency constraint is to
require that operations called in sequence- or state diagrams
must be defined in a structure view, either a class or a com-
ponent interface. On the other hand, a conformance constraint
is evaluated between an rCOS model and the stereotypes of
the profile. For example, an rCOS sequence diagram can only
have synchronous method calls.

G. Profile implementation

We have developed a CASE tool, called rCOS modeler
[9], which provides an end-to-end integrated development
environment for rCOS, and we implemented the rCOS profile
in the tool. The tool is based on TOPCASED, “The Open-
Source Toolkit for Critical Systems” [20], and developed in
Java as a plugin for the Eclipse IDE. We extend and customize
UML diagram editors of TOPCASED to limit and/or add menu
items in editing palettes and popup menus of the various views.
The customized user interface clarifies the usability of the
rCOS modeler, enabling the user to drag and drop the correct
elements to the appropriate views, and offers a convenient
way to guide the user through the full development process.
It also contributes to the OCL well-formedness checking by
indicating the elements failing the validation and pointing out
the possible causes.
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IV. SUPPORT CB-MDD DEVELOPMENT

The rCOS methodology supports the development activities
from requirements modeling through object-oriented design to
component-based models. This process leads to a sequence
of models, evolving in their levels of detail. Within the
process, object-oriented analysis and design techniques [17]
and component-based techniques can be applied in harmony.
Models in later developing phases are constructed from those
in earlier phases by correctness preserving model transforma-
tions, which implement the rCOS refinement calculus and have
been integrated into the rCOS modeler. In this section, we
discuss how the rCOS methodology can be supported by the
rCOS modeler using an example.

A. Requirements modeling

The rCOS modeling process starts from the creation of
an empty rCOS model, and then we capture the business do-
main concepts with a conceptual class diagram. The business
processes are described as a set of use cases. For each use
case, a component is created, along with an empty sequence
diagram that has only two lifelines representing the actor and
the provided interface of the component. Through adding a
message to the sequence diagram, a corresponding method for
the interface is automatically produced. Then, we can specify
the data functionality of the method as an rCOS design using
RCOSP. After having completed the sequence diagram, we
can generate a UML protocol state machine to represent the
reactive behavior of the component interface.

We take as example the CoCoME (“Common Compo-
nent Modelling Example”) case study [10] that describes a
supermarket trading system. The example originated from
Larman’s book [17]. In the resulted requirements model, the
domain concepts are captured in Fig. 8. One of the use cases,
process sale, describes the check-out process: a customer takes
the products she wants to buy to a cash desk, the cashier
records each product item, and finally the customer makes the
payment. Depicted in the left part of Fig. 9, the use case is
modeled by the interface CInter of a component ProcessSale,
and the right part displays the method signatures and fields of
the interface. Its scenario is described by a system sequence
diagram shown in Fig. 10. In addition, each method has
a functionality specification as its body, e.g. the following
RCOSP code is for method enterItem:
public enterItem (Barcode code, int qty) {
[ qty > 0 ⊢ true];
[ ∃ Item i: store . catalog . contains ( i ) ∧ i.barcode = code ⊢ true];
[ ⊢ line’ = LineItem.new(code, qty)];
[ ⊢ ∃Item j: store.catalog.contains ( j ) ∧ j.barcode=code

∧ line.subtotal ’=j . price ∗ qty];
[ ⊢ sale.lines . add(line )] }

Here the method body is defined as a sequential composition
(using ”;”) of rCOS designs, each in the form of [p ⊢ R],
meaning that if the program is started at precondition p, the
execution will terminate in a state where the postcondition
R holds. A variable or field in the post-state is indicated
by its primed version, and the omission of p implies the
precondition is true. As a design is defined in the context of
the interface and the class diagram, the navigation of the class
diagram and invocation of methods are allowed. For example,

Fig. 8. Domain class diagram

Fig. 9. Use case-, component-, and interface diagrams

Fig. 10. Sequence diagram for CInter

the expression store.catalog.contains(i) means that starting
from the field store of type Store declared in the interface,
we navigate along the association catalog of Fig. 8 to get a
collection of Items, and check whether Item i is contained in
the collection.

Through checking the OCL constraints defined in the pro-
file and type checking the method bodies, the static consistency
of the requirements model can be ensured. Moreover, we can
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Fig. 11. Interactively applying expert pattern

Fig. 12. Refined object sequence diagramgenerate CSP specifications for the sequence diagrams, state
diagrams and the rCOS designs, and then check the dynamic
consistency of the model in the FDR2 model checker [21].

B. Object-oriented design

From a consistent requirements model, we start the OO
design in which the rCOS refinement rules can be applied to
optimize the model’s data structures and functionality speci-
fications. We first generate a controller class for an interface,
and we create an initial object sequence diagram by replacing
the interface lifeline in Fig. 10 with a lifeline representing the
object of the controller class.

Then the expert pattern of responsibility assignments is
used to refine the method functionalities of the model. From
a message of the object sequence diagram, we open the
design of its corresponding method, and select a fragment
to delegate to an object of a domain class. For example,
as shown in the screenshot of Fig. 11, we select the part
”[∃Item i : store.catalog .contains(i) ∧ i .barcode = code ⊢ true];”
from the specification of message enterItem. The tool analyzes
the selection, and provides a candidate target object to assign
the responsibility, e.g. store in here. After we input the name
for the method that will be created to perform the delegated
responsibility, e.g. findItem, the execution of the transformation
replaces the selection part with ”store.findItem(code);”, and
creates a method findItem in class Store as follows:
public findItem (Barcode x3) {
[ ∃ Item i:catalog . contains ( i ) ∧ i.barcode = x3 ⊢ true] }

Accordingly, the object sequence diagram is updated by adding
a new lifeline store of type Store and a new message findItem.

Through repeated applying the expert pattern, the object
sequence diagram is finally refined to Fig. 12, and the domain
class diagram is therefore refined to a design class diagram
by adding methods to the domain classes. Moreover, for class
diagrams, we can apply the set of rCOS structural refinement

rules [12]. At the end of the OO design, a requirements model
becomes an OO design model which includes a set of object
sequence diagrams and a design class diagram.

C. Component-based model design

OO model to component model: From the object sequence
diagram of a component’s controller class, a number of object
lifelines can be selected to convert to a new component using
the object sequence diagram to component sequence diagram
transformation [15]. If the validity checking of the lifeline
selection passes, the new component is created as a sub-
component of the original component, and the selected object
lifelines are collapsed into a lifeline representing the new
component. Meanwhile, the component diagram is accordingly
updated, and a new sequence diagram and a state machine are
generated as the protocol for the new component. By repeating
this process, a component is decomposed into a composition
of a number of sub-components within the component, and
the connection and interaction of these sub-components are
illustrated by a component diagram and a component sequence
diagram, respectively [15].
For example, by applying the transformation three times on

Fig. 12 (selecting lifelines proce, sale and line first, store sec-
ond, and pay third), we translate the object sequence diagram
to a component sequence diagram shown in Fig. 13, and we
accordingly obtain a component diagram depicted in Fig. 15,
in where the provided interfaces of new components COM_store
and COM_pay are plugged to the required interface of another
new component COM_proce, and the last component realizes
the functionality of component ProcessSale. Fig. 14 shows the
protocol generated for component COM_store, which consists
of a sequence diagram and a protocol state machine.

Component composition: After that, rCOS component compo-
sition operators, such as renaming, plugging, and parallel com-
position, can be continuously applied to optimize the model,
or build new components from existing ones. However, even
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Fig. 13. Component sequence diagram for ProcessSale

Fig. 14. Provided protocol of component COM_Store

the components representing the use cases can be composed
to form a single big component to meet the architectural
requirement.
For the component diagram of Fig. 15, we consider to

combine the components COM_store and COM_pay into a
single component for the purpose of better deployment. First
we remove the «Composition» connections from the diagram,
and then compose the two components together, that gener-
ates a new component COM_pay_SH. As the interfaces of
COM_store and COM_pay are disjoint from each other, the
new component is resulted from the disjoint union of that
two components. Finally, we plug the provided interface of
COM_pay_SH into the required interface of COM_proce. The
tool will check the composability of these two interfaces:

• Method signatures: Both interfaces have at least one
identical method signature. It is obvious that all the
method signatures of the two interfaces are identical.

• Behavior protocols: We generate CSP processes from
the PSMs of the two interfaces, and check the gen-
erated assertions in the FDR2 tool that the parallel

Fig. 15. Component diagram for ProcessSale

Fig. 16. Final component diagram for ProcessSale

composition of these two processes is deadlock free.
Thus, the method invocation traces specified in the
protocol of the required interface of COM_proce are
accepted by the provided protocol of COM_pay_SH,
and the interactions of the two components will not
be blocked.

Fig. 16 shows the resulted component diagram. The RCOSP
counterpart of the component diagram is shown for comparison
in Listing 1.

Through two stages of interactive, stepwise refinements,
we get a component architecture model which refines (im-

198



plements) the original requirements model. The component
model includes component sequence diagrams and compo-
nent diagrams to define the interactions and relationships of
the components. Each component has its provided/required
interfaces, as well as a protocol, that consists of a sequence
diagram and a state diagram, to define the behaviors of the
component. Based on the component model, we can further
generate program code for the components and accordingly
deploy them to form a software system.
component ProcessSale {
provided interface CInter

by COM_proce.ConInter_proce {...}

composition : COM_proce|COM_pay_SH
[(COM_proce.RInter_proce

<< COM_pay_SH.ConInter_pay_SH)]

component COM_proce {
...
provided interface ConInter_proce {...}
required interface RInter_proce {...}

}
component COM_pay_SH {
provided interface CInter_pay_SH
by COM_store.ConInter_store,

COM_pay.ConInter_pay {...}
composition : COM_proce|COM_pay

[(COM_store || COM_pay)]

component COM_store {
provided interface ConInter_store {...}

}
component COM_pay {
provided interface ConInter_pay {...}

}
}

}

Listing 1. Final component model in RCOSP

V. RELATED WORK AND CONCLUSION

UML profiles provide a standard extension mechanism for
defining modeling languages. A certain number of UML pro-
files have already been defined, either for generic purposes, or
to deal with specific technologies. Among them, the OMG has
proposed a set of standard UML profiles, such as SysML [22],
which is a UML profile for specifying, analyzing and designing
complex systems; and MARTE [23], which is a UML profile
supporting specification of real-time and embedded systems. In
the field of requirements engineering, a profile [24] is designed
to allows the KAOS model to be represented in UML. In
[25], a UML profile is proposed to describe distributed and
asynchronous software components using UML 2 diagrams
for both architectural and behavioral specifications.

Integration of formal methods into MDD has been broadly
explored [6]–[8]. Modeling languages must have formally
defined semantics, and the multiple views of a complex model
need to ensure their consistency. In this perspective, most of
the works focus on translating modeling views into a formal
specification, thus the formal semantics of the model is defined,
and existing analysis tools of the formal language can be used
in the proof of desired properties. Among the others, Z, B,
CSP, Petri nets are the most often chosen target languages. We
cite the work of Idani et al. [26] that proposed a metamodel-
based transformation of UML models to B. Similarly, there

is an MDE based transformation approach for generating
Alloy specifications from UML class diagrams and backwards
[27]. Different from those, our work is mainly concerned
with the integrated tool support for the stepwise, incremental
development of models by applying the formal refinement
calculus of rCOS. In other words, we are more interested in
supporting the development process of MDD and CBD with
formal methods, not the statically checking of the models at
various stages.

In [9], a previous version of rCOS profile was presented as
the center part of the rCOS modeler, and the object sequence
diagram to component sequence diagram transformation was
proposed in [15]. In [10], we have studied the refinement
driven development process, carried out by hand, for the
CoCoME case study. In the current rCOS profile presented in
the paper, we clearly separate the rCOS concepts from UML
metamodel concepts, and define rCOS components compo-
sition in both horizontally and vertically. We also explicitly
define the UML sequence diagrams, protocol state machines
and other UML artifacts used in rCOS modeling. In addition,
we describe in the paper the concrete steps of how rCOS
development process is driven by applying a set of model
transformations, and automate the transformations into the
rCOS CASE tool.

Conclusion

This paper reports part of our efforts to develop rCOS from
a formal theory to a practical tool in the field of component-
based model driven software development. We propose a
UML profile with necessary stereotypes, tagged values and
constraints in order to represent the main concepts of rCOS
in UML and support the development methodology of rCOS.
We implement the rCOS profile in the rCOS modeler, a CASE
tool for rCOS. The tool automates the rCOS refinement rules,
such as expert pattern and structural refinements, as correctness
preserving model transformations. Thus the full development
process, from requirements elicitation through object-oriented
design to component-based architectural modeling, can be
supported by the tool with a user-friendly interface in an
incremental and interactive manner. A model can be analyzed
and verified in the tool to ensure its correctness. The rCOS
modeler with examples is available from http://rcos.iist.unu.
edu.

However, the generation of program code, the last step
of the software development process, is not addressed by the
paper. Currently, the rCOS tool can only generate monolithic,
non-distributed Java programs from the object-originated mod-
els. To support component-based, distributed applications, we
still need further transforming the component-based models
into particular platform, such as the Model-View-Controller
(MVC) architecture. The MVC design pattern solves the prob-
lems arising when applications contain a mixture of domain
data (Model), GUI presentation (View), and business logic
(Controller). The rCOS model structure provides a basis for
implementing an rCOS model as a MVC style application.
For example, we can develop rCOS class model, use case
model and component model into the Model, the View, and
the Controller of MVC, respectively. And finally we could
build web applications through generating corresponding SQL,
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Java/JML, and JSP codes from different parts of the MVC
using template techniques.

Model-driven development is still in its infancy compared
to its ambitious goals of having a (semi-)automatic, tool-
supported stepwise refinement process from vague require-
ments specifications to a fully-fledged running program [28].
Integrating formal methods into UML opens up a good way
to structure the development activities from object-oriented
design and to component-based systems, and we hope the
experience and techniques learned from the work of the paper
could be helpful in supporting model-driven and component-
based software development through formal methods.
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