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Abstract

The Unified Modeling Language (UML) is the de-facto standard modeling language for the
development of software with broad ranges of applications. It supports for modeling a software
at different stages during its development: requirement analysis, design and implementation.
The use of UML encourages software developers to devote more effort on requirement analysis
and modeling to produce better software products. The most important models to produce in
an object-oriented requirement analysis are a conceptual class model and a use-case model. This
paper proposes a method to combine these two models by using a classic transition system.
Then we can reason about and refine such systems with well established methods and tools.
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Introduction 1

1 Introduction

Object-orientation is now a popular approach in software industries. The Unified Modeling
Language (UML) [BRJ99, RJB99, JBR99] is the de-facto standard modeling language for the
development of software with broad application ranges, covering the early development stages of
requirement analysis and with strong support for design and implementation [BRJ99, DW9S|.
One of the main advantages of UML is that different modeling diagrams are used at different
stages to represent the system from different views at different levels of abstraction.

The main models for the requirement analysis of a system are a conceptual model and a use-case
model. The conceptual model represents the domain concepts as classes and their relationships
as associations. It determines the possible objects and relationships between these objects.
Requirement analysis is not usually concerned very much about what an object does or how it
behaves [Lar98, DWO98|. Therefore, a conceptual model is mainly used as a static model of the
structure of the application domain.

The use-case model is used to specify the required functional services that the system is expected
to provide for different kinds of users. A use-case model contains a number of use cases. Each
use case describes a pattern of interactions between some users and the system.

One of the main problems when using UML is to ensure consistency between different diagrams
used in a system development. When there is not yet a well established semantics for the whole
language it is impossible to check consistency or to reason about relationship among the different
models. In [EKHGO1], problems concerning consistency between models for different views are
classified as horizontal consistency and those about models at different levels of abstraction
as wvertical consistency. And each kind is divided into syntactical consistency and semantic
consistency. Obviously semantic consistency requires syntactical consistency. Formal treatment
of these kinds of consistency in fact requires the establishment of a formal framework for the
specification of object-oriented software systems and the manipulation of such specifications
through well disciplined transformations.

Syntactic consistency conditions are expressed in UML in terms of the wellformedness rules
of OCL (Object Constraint Language). The article [EKHGO1] defines and checks a particular
behavioral consistency between different statecharts by translating them into Hoare’s CSP. The
work in [Egy01] deals with automated checking of horizontal syntactical consistency among
models, such as design class diagrams and object sequence diagrams.

There is currently a lot of active research on formalization of UML. However, most of it focuses
on translating a individual UML notation into an existing formal notation. For example, a class
diagram is in Z or VDM [Ken97, pG99], and an interaction diagram or a statechart is translated
into a CSP specification [EKHGO1]. For UML to be more effectively and precisely used in a
software development process, more research is needed on the relationships among the different
models used in UML. This work is an attempt in this direction.
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Conceptual Model 2

The long term aim of this research is to support formal use of UML in OO system development
processes and development of tools for reasoning about properties of object-oriented systems.
The method is expected to be usable within an incremental and iterative Rational Rose Devel-
opment Process (RDP) [JBR99]. We believe this will help on the one hand to change today’s
situation that OO software development in practice is usually done in a non-scientific manner
based on pragmatic and heuristics. On the other hand, with incorporation of our method into
RDP, we hope to improve the use of formal methods in the development of large scale systems.

This paper proposes a method for specifying and reasoning about the UML conceptual model
and the use cases of a system. It is based on the well known notation of transition systems

IMPS81] of the form S & (I, Inw, Init, P), where

e I'is a set of declared state variables with known value domains. These variables and their
data domains are constructed from the conceptual model.

e [nv is a state predicate called the invariant of the system. It has to be true during the
operation of the system. This is determined by the conceptual model too.

e [nit is a state predicate determining the initial states of the system. It is established by
the installation of the system.

e P is a set of state transitions that models the execution of the use use cases.

Both syntactic and semantic consistency between a conceptual model and g use-case model are

taken into account in the formal definitions of a conceptual model, object diagrams and system

operations.

After this introduction, a syntax and a semantics for a conceptual model are defined in Section 2.
The syntax follows the traditional graph definitions. The semantics of a conceptual model is
defined in terms of the variables, their value domains and the object diagrains as the state space

of the model. Section 3 defines a syntax and semantics of the a use-case model. The semantics
of a use case_is defined based on the semantics of the conceptual model and how it carries out
state transitions. This will lead to a combination of a conceptual model and a use case model
into a_transition systewinally conclusion and discussion are given in Section 4. Small but
illstratitive examples are used through out the discussion.

2 Conceptual Model

One of the main artifacts to produce in an OO analysis is a conceptual class diagram. Such a
diagram captures the physical concepts and their relations in the system’s application domain.
In UML, a concept is represented by a class with a given name. An instance of a concept is
called an object of the corresponding class. A relation between two concepts are denoted by an
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Conceptual Model 3

assoctation. In addition to associations between concepts, a concept may have some properties
represented by attributes. For example, Account has a balance as an attribute and Customer
has a name as an attribute. There are two approaches to deal with attributes. The first is to
introduce Lypes_of pure data values [BRJ99] and then to represent attributes as component fields
of classes. Alternatively, these types of pure data values can be treated as classes and attributes
as associations [LLHO1]. In this paper, we follow the former approach.

We must understand that at the requirement level, a class simply represents a set,_of objects—
A system requirement specification is concerned with what the system does as a whole rather
than what an individual object does, how an object behaves, or how an attribute of an objectis
represented. The decision on the later issues will be made during design. A use case is designed
by decomposing its responsibilities and ﬁig';ning them to appropriate objects [Lar98]. Use case
decomposition and responsibility assignment are carried out according to the knowledge that
the objects maintain'. What an object can do_depends on what it knows, though an object does_

not have to do all what it_can do. What an object knows is i ttributes and

associations with other objects. Only when the responsibilities of the objects are decided in
design, can the directions of the associations (i.e. navigation and wisibility) and the methods of
the classes be determined. This indicates that an association has no direction or equivalently

two directions and a class has no methods, This nature of conceptualmadels enables us to avoid

from recursive definition of objects and method calls and to keep the theory simple [HLLO1].

2.1 Conceptual class diagram

To define a syntax for class diagrams, we introduce three disjoint sets of names CName,
AName, and attrName to denote classes, associations and attributes. For each A € AName,
we assume a unique name A~! € AName called the inverse of A, and (A=)~ = A.

Each attribute of an object takes a value in a type of pure data called a data type. Examples of
data types include types of natural numbers N, integers Int, Boolean values Bool, characters

char, etc. denote the types.

Definition 1 (Conceptual Class Diagram) A conceptual class diagram is a tuple: A =
(C, Ass, Att, <+— ), where

e ( is a nonempty finite subset of CName, called the classes or concepts of A.
—_——

e Ass is a partial function Ass: C —e»(AName PN x PN x C) such that

ASS(CQ)(A_l) = <M2, Ml, 01> iff ASS(Cl)(A) = <M1, Mg, 02>

where PN is the powerset of N.

—

If Ass(C1)(A) = (M7, My, Cy), then A is called an association between Cy and.Co, M; and
My are called the cardinalities of C7 and C5 in A. An association A is in general denoted

1This is the main idea of the design pattern called Ezpert Pattern.
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Conceptual Model 4

by A : (C1. My, M5, Cy). We use AssN(C1.Co) to denote the set of all the associations
between Cq and Cs.

e Ait is a partial function At - C e (attrName —e» 7). We use C.a : T to denote
Att(C)(a) = T, and call a an attribute of C and T the type of a. We use attV(C) to
denote the set {a : T | Att(C)(a) = T} of all the attributes of C.

o <— C(C xC is the direct generalization relation between classes. ,We use C; <—— Cy
to denote (C1,Cs) € <—— and say that_Cy is a direct superclass of Cy, and Cs is a direct

subclass of C1.

Definition 1 allows more than one association between two classes. a same nam iations
between iff i classes, and a same attribute name for attributes of diffle}:eﬂty
~classes., In Figure 1, we give two class diagrams Bankl and Bank2 for two possible banking
systems. We only show either an association or its inverse, but not both in a diagram.
Customer Customer
1
Holds Holds
0.3 1
Account Account
balance: Real balance: Real
@ Baa Banks2

Figure 1: An example of class diagram

2.2 Semantics of class conceptual diagrams

class diagram specifies a family of types to represent the data domain of an application.
Each class name C' in a conceptual class diagram A is associated with a class of objects in the
application domain. Let us assume a set O of objects in the universe. Therefore, A assigns each
C € C a non-empty subset C of @. We.call C the object type of C' [AC96]. The generalization

relation <— in a class diagram defines a W relation between the classes contained
in A:

SUBT-1: C <: O fi h C eC.
< or eac € P
SUBT-2: C <: C for each C € CName.
SUBT-3: C; <: Cy if (9 <+—— (' is contained in A.

SUBT-4: C; <: C3if C; <: Cy and Cy <: Cs. )

[
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Conceptual Model 5

The meaning of C; <: Cq is defined as the set inclusion C; C Co,

In general, for two list of types T; = Ti;...T1, and Ty = Toy ... Ty, let

T, < T, m=nAVi:l.ne(Ty <: Ty)

We require that a class diagram satisfies the following conditions.

1. The generalization is acyclic:

W1(A) déf Ci <t— Cz = ;é (0

—

2. The attribute names of a class are all distinct:

Wa(A) Y vO € CName o dist(m (attV (C)))

where 71 (attV (C)) is the list of attribute names of C, and dist is true if all these names
are distinct.

3. An attribute name assigned to a class Cy should not be assigned to its subclass Cy:

def Ci <:Cy _
W3(A) = ( A Cy % Ch > = m1(attV(C1)) Nmi(attV(Cs)) =0
4. Similarly, any_association name assigned to a class Cy should not be assigned to its sub-
classes: — —
def Ci <: Gy V(' € CNamee
Wa(A) = ( N C1 # Oy ) = ( (AssN(C1,C)N AssN(Cy, C) = 0) >
5. Differen iati een the same pair of classes should have different names: for

any C1,.Cs € C and Ay, Ao € AName:

def (Ass(C1)(Ar1) = (My1, M12, C2))
Ws(8) = < A (Ass(C1)(An) — (Mo, Mag. Ca))

> = A1 = Ay
A class diagram A is well-formed if it satisfies

W(A) & W (A) AWy (A) ATWA(A) A WA(A) AT(A)

A class diagram A also identifies the following sets of variables that use cases operate on.

1. Cvar @ {C:PC | C €} in which each C records the current set. of objects of class C
existing in the system.
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Conceptual Model 6

2. AVar & {A:P(C; xCq) | A: (C1,M;,Ms,C5)} in which each A records the links
between objects existing in the system.

We call variables in CVar U AVar variables in A toa, In general, we use type(x) to denote the
type of a variable or an expression z, and type(z) to denote the list™of types of type(T)-
‘_’_’_l"

2.3 Object diagrams as system states

By introducing C, we have made an important distinction between classes and types. We denote
by C the type of class C. With this distinction, we can avoid the confusion of using C' as both

a type and a variable.
———————— e ———

In UML, an_object diagram of a class diagram A consists of some objects and links between

these objects. - The ohjects have to be instances of classes in the class diagram, and the links

have to be instances of associations in the class diagrams. In our formalization, we define an
object diagram as a state of the variables in A.

Definition 2 (Object Diagram) Let A = (C, Ass, Att <+ ) be a conceptual class diagram.

An object diagram_g is a_state over the variables v CVar U AVar, that is a mapping from
variables in CVar U AVar to values of their types:

e For each C' € CVar, the value o[C] of C' in state o is a subset of C.

e For each A : (C1, M1, Ms, C3) € AVar, the value o[A] of A in state o is a subset of C; x Cs.

e For each C' € CVar, each a : T € att(C), and each o € ¢[C], o.a is a variable too and its
value o|o.a] in state o is taken from T.

Let Att be a state variable that takes values of sets of the form

{o.a1 : T1,...,0.a, : Ty}

Its value o[Att] in a state o is

{o.a:T | 3C €C.(o€a[C]N(a:T)e Att(C))}
—J—'J—

Unlike CVar and AVar that are fixed for a class diagram, Att changes during the oper-

ation of the system that the class diagram models.

An example of an object diagram of Bankl in Figure 1 is given in Figure 2.
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Conceptual Model 7

al: Account

Hold

c1: Customer
- $1000

Holds
¢2: Customer

al: Account

$5000

)

Figure 2: An example of an object model

2.4@ate assertionsj

An application may require some property always holds during the execution of the system. For
example, Figure 1 shows that a customer is allowed to have up to 3 accounts in a “big bank”
modeled by diagram Bankl, while a customer has one and only one account in a “small” bank
modeled by Bank2. In general, we can use predicate over V U Att to specify a state constraint.

For an association A : P(Cy x Cs) and an objects 01 € Cq, let

de
_Alo) ? {0r |02 € Ca A (01,00) € A}

Apart from the syntactical constraint expressed in Definition 1 and the well-formed condition
W(A), the following_state ipvariants must be met by any valid state of A: for any classes C,
C1, Co, and any association A : (C1, My, M, Cs) in A,

def VA :P(Cy x C2) € AVar, \/
0 = ( Yoy : Cy. 0 : Cy ((01 02) €A== (01 ceCiNoy € 02))
0, Y VA€ AVar, o € C1 00 € oo (| A(01) |€ MaA | AL (02) |€ M) \/
0 def VA'IP’(CGCQ)EAVar, ((C C)€A<:>(C C EA
5 Vo1 : C1,02 € Co b 2:¢1) \/
04 déf Ci<:Cy= (1 C Oy
where M7 and M, are the cardinalities of C; and Cy in A. M

Property 0 ensures that associations only link currently existing objects in a state, and all links
of a objectmust he remqved as well if this object is removed from the system; 0> characterizes
the cardinalities of the roles in an association; 03 asserts that an association is m
and 04 describes the inheritarmm diagram ot & conteptua'rgi;ss W

X of A that satisfies

0 0, 76y A 05 1B,

—
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Conceptual Model 8

Definition 3 (Semantics of a Conceptual Diagram) The semantics of a_conceptual class
diagram A is the set of all its valid object diagrams, denoted by [A].

The object diagram in Figure 2, is a state of Bankl but not a state of Bank2 in Figure 1.

The constraint 6 of A is enforced by the diagram itself. However, only classes, associations, and
their cardinalities are not enough to express all constraints that the applic@jm_@_gi@. For

example, the diagram in Figure 3 does not describe the property that a copy being held for a
reservation must be a copy of the publication reserved by the reservation. This property cannot
be represented by drawing elements. In UML, it can only be represented by a comment in text.
In our model, this constraint can be described as the state assertion:

Ve € Copy,
Vr € Reservation, | e (IsHeldFor(c,r) A IsOn(r,p) = Has(p,c))
Vp € Publication

where we used the convention R(a.b) for < a.b >€ R for a relation E,- This constraint can be
written in terms of the algebra of relations

IsHeldFor o [sOn C Has™*

where o is the composition operation of relations.

1 tokes

- |sAvailable
Borrows

Makes -
IsLendable
* *
1sOn
Reservation H Publication
1
@ - |sHeldFor

Figure 3: A class diagram for a library system

2.5 Conceptual models

Definition 4 (Conceptual Model) A conceptual model CM = (A, Inv) where A is a con-
ceptual class diagram and Inv is a state constraint over A_."_

A state property ¥ of a conceptual model can be reasoned about by _proving the implication

O A\ Inv = 1 in the relational calculus. We denote hy CM |= 1 that C'M satisfies /. This also
allows us to define transformations between conceptual diagrams that preserve a state constraint.
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Conceptual Model 9

2.6 Associative classes, abstract classes and aggregations

UML allows_associative classes. An example of this kind of classes is shown in Diagram of
Figure 4(a). The Class JobContract is about the association Employs. ltcanbemodeled by
_a decomposition of the association into two associations as shown in Diagram (b) of Figure 4.
Notice that the cardinalities of Company in the association Has and People in the association
IsFor are both {1}. However, we further need to relate the association Employs with the two

newly mtroduced associations by the constraint

Has o IsFor = Employs

Company T vz People

JobContract

sdary

Diagram (a)

1 M2| JobContract | \sq 1
Company People
Has salary IsFor

(1)) Diagram (b)

Figure 4: Representation of Associative Class

In general, an association A : (Cy, My, M>s, C5) can be decomposed by adding a new class AClass
and two new associations, Ay : (Cy, {1}. My, AClass) and Ag - (AClass, My, £1} Co) such that
A1 0 As = A. Such a decomposition also changes many-to-many associations into one-to-many

associations that are much easier to realize. BThis treatment of associative classes can be also
used in applications where some classes are needed to relate any number of classes.

A class C' € CName is an abstract class if there are C1,...,C; € CName such that C' <+— C;
and the following condition is an invariant of the system:

C = U C;
i=1...k

~The relation that a class C is an aggregation of a class C1 can be treated as a general associa-
tion. Most of the properties of an aggregation association are design-oriented and more about

the visibility of the whole C' to the part C7. There are two kinds of aggregations, composite
aggregations and shared aggregations. C is a composite aggregation of C if an object in ('] can

only be a part of one object in C. In the case when C' is a shared aggregation of C1, an object
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Use-Case Model 10

of C; can be shared by a number of objects of C' as their part. These properties can be specified
in terms of cardinalities as shown earlier.

There are some_hehavioural properties about aggregation such as parts cannot exist with out a
whole. If we use IsPartOf to denote a general ageregation, this property can be specified as.

Vo1 : Cre (01 € Cy = Jdo € CelsPartOf(o01,0))

This implies that all the parts must be removed when their whole is remox‘/_('eii;_,_

3 Use-Case Model

Given a_conceptual model CM, an object diagram represents a snapshot of the system at
a_moment of time. The execution of an atomic use case will change the system from one
state into another. Such an atomic use case is called a system operation [Lar98]. It changes a
system’s object diagram by creating new objects, deleting old objects; forming or breaking links
between objects; or modifying attributes of objects. However, the system only executes a system
operation when it is called by an actor. Therefore, we should also model actions performed by
the actors.

3.1 \ System operations

To define an_operation, we use the nation of designs in [HH98]. A design is a predicate that

relates the initial values of state variables to their final values. It takes the form of p(x) - R(x, 2")
w e

(p(z) - R(z, ")) © ok Ap(z) = R(z,z") A ok’

where x represents the value of z in the initial state and 2’ represents the value of z in the final
state. Such a design asserts that the precondition p must be true before the operation starts,

and the post-condition R holds when the operation terminates.

However, a particular operation only changes part of the system variables. Thus, its design is
always framed with the set of the variables it changes and it takes the form:

X:(pl—R)difijA(w':Q)

where w contains all the system’s variables but those in X.

A system operation operates on the following variables.
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Use-Case Model 11

1. It may change a class variable C' : PC by creating a new object or deleting an existing
object. Therefore, an operation may access variables in CVar.

2. It may change an association variable A : P(C; x Cy) by forming a new link or breaking an
existing link between two objects. So variables in AVar may be accessed by an operation.

3. The value of Att will be changed when a new object is created or an old one is deleted.

4. An attribute o.a in the current value of Att may be modified or read. e.g. changing or
outputting the name of an existing person.

5. A system operation will be executed when some input value parameters are provided
and will output some results to some variables. Therefore, an operation is specified as a
procedure with a list x : T of formal value parameters and a list y : Ty of formal result
parameters. Such a procedure can only be executed when it is called by an actor object
that provides thE,a&MLyalue _and result parameters. We use val to denotes the set of all
actual value parameters and res the set of all actual result parameters for the calls to the
system operations. These two sets of parameters are also variables that are accesses by
the execution of the system operations. We require that these variables do not_introduce
ne ss type

6. The-aetars decide_theprotacol jn which they interact with the system. Local control

variables are need for sequencing, choices and iterations. A control variable is of a simple
data type.

We have V to be the set that contains the variables identified in items 1-4. Let U be the set of
variables that contains the actual parameters and control variables identified in items 5 and 6.
and P the set of formal parameters required for the specification of the system operations. We

define I' 2 VU U, and Q2 7 V UP. Now a system operation is defined in the form

op[z : T1; y: To] :: Pre: P; Post: R

where op is the name of the operation, z : Ty and y : To the formal value and result parameters,
P is a predicate over ) that defines the precondition, R is a predicate over variables in Q and
their primed versions €)' that defines the post condition.

The gemantics of operation op is defined as a @

opdéfX:(Pl—R)

where, P and R only contain variables in I', and X is the set of variables that can be modified
by op.
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Use-Case Model 12

<_

3.2 Qctors operations

An actor’s operation may modify actual value parameters in val and read values from actunal
result parameters in res. It of course may modify and read a control variable. We call these
operations that only access variables in U conirol operations. A control operation has no effect
on the_object diagr odel. Such an operation is in general a guarded

. ——
design of the form

g — X : (Pre - Post) = g N\ (X : Prel- Post)

This operation can only take place in a state that assigns g to true. Remember that such an
operation only contains variables in U.

Actors have to call system operations to carry out a use case., It is possible that one or more
actors call an operation for a number of times as well as different system operations. To define
system operation calls by actors, we introduce a set Actor of names to represent the set of
individual actors (or users) involved in the system. A call to a system operation op[z : T1; ¥ :
Ts] :: Pre: P; Post : R by an actor u is an operation of the form op,(val; res): a

opu(val; res) L W(op(val; res)) = oplval/z; res/y]

W (opu(val; res)) . (type(val) <: Ty) A (T, <: type(res))

where oplval/z; res/y| is obtained from the design of op[z : Ty; y : Ty by substituting z and
. — - - ————
y with val and res respectively.

This definition implies that it is the caller’s responsibility to ensure the correctness of the tvpes
of the actual parameters. If a call is not well-formed, the system behaves chaotically. Of course,
a system operation can be refined to handle unwell-formed calls as exceptions.

For concurrent applications, an actor u can make anumber of calls simultaneously:
opy, (valy; resy) A opy(valy; ress)

In general, we allow to conjoin two actors actions by conjunction A. Such an operation is called
an joint operation.

A call to a system operation by an actor can be conditional and in the form of

g — opy(val; res)

where_g only contains variables in U. A non-conditional call is a special conditional call in which
the guard is true.

In summary, an operation of an actor is either a control operation, a conditional call or an joint

action to a system operations. The use cases of a system are then specified by giving a set Actor

(i@gteﬁg, a set of system operations OP and a set of actors operations (also called actions) UA.
-~— A
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Use-Case Model 13

Some readers may wonder how sequential composition of two actors operations specified. This
can be done by using a control variable £:

Py B (=) = PN =) ((=co) —Pon(l=cy)}

where c¢1, co and cg represent the labels of commands, and it is required that ¢ = ¢; initially.
AN

For example, we can sp{(cify system operations FindUser[Id : N; u : User|, FindCopy[ld; :

N; c¢: Copy], Loan[u : ¥User, ¢ : Copy] for a library system [LLHO1]. Actor librarian L can

carry out the use case LendCopyy(i1,i2) by the protocol

(i) € N) A (i5 € N);
(FindUserr(i1; u); (u # null) — FindCopyr (is; c);
(¢ # null) — Loanr,(u, c)

This use case defines the behaviour of the process of lending a copy to a user. The librarian
first inputs the identifications of the user and the copy. He/she then calls the system operation
FindU ser which returns the user object if found otherwise null. If the user is found, the librarian
then calls the system operation FindCopy which returns the copy if found otherwise null. If
the copy is found, the librarian calls the system operation Loan that creates a loan and record
the user and copy on the loan.

This specification is only correct if no other actor tries to lend the same copy to another user at
the same time. In that case FindCopyr, and Loany should be carried out together atomically
as

(u # null) — FindCopyr (i2; ¢) A Loang(u, c)

3.3 Constructing a system specification

Given a conceptual model CM = (A, Inv), a set of systems operations OP, a set Actor of
—_—
actors, and a set UA of actors operations, we construct

e The set I' of variables that the actors operations operate on.
_\'\—\_H

e An initial condition Init which define the set of states from which the system can start to
work.

The system is then specified by the transition system S =l (T, Inv, OP, Init, UA).

T — p—

S is well formed if every operation call in UA is a call to an operation in OP from an actor in
Actor:

W(S) def Vopy,(op, € UA = op € OP Au € Actor)
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Use-Case Model 14

Jhe semantics of § is defined to be all the possible execution sequences of the operations in
UA. Formally, an execution of § is an infinite sequence of states, og, 01 ..., such that

e 0 satisfies Init.

e Each step (0y,0i41) is a carried out by an operation in TA —ie~there iy an operation
op, € UA such that o; satisfies the precondition of op, and its guard and (g;.0;.1)
satisfies the post-condition of op,,.

Each execution of S in an interleaving of a set of scenarios of use cases. The invariant properties
Inv can be prove by showing that for each op, € UA,

Pre A g A Inv A Post = Inv'

where Pre and Post are the precondition and post condition of op,, g is the guard of op,, and
Inv' is the predicate obtained from Inv by replacing its variables with their primed versions.

From the work [HMP94] about the definition of Hoar’s CSP speciﬁca‘gigr}_b_y,tla.n.sjﬁon—systems\
we can also write the specification of use cases in the notation of CSP.

Let each operation call op,(val; res) be an event triggered by actor u, and let D(op,, (val; res))
denote the design of op,(val; res)) defined in this section. Define a CSP command

\__/'
opu(val; res) — (D(opy(val; res)); out,!(res))

The meaning of this command is that once an interaction op, between actor u and the system
occurs, the system carries out the operation according to the design of the operation to change
its state and outputs results to the actor.

Such a CSP command can be guarded by a Boolean expression too in the form

b A opy(val; res) — (D(opy(val; res)); out,!(res))

@,

Then sequential composition “;”, external choices “[|”, non-deterministic choice “I”, and recur-
sion can be defined to form a specification of a use case as a CSP process. The use-case model
is then given as the interleaving composition of the specified use cases in the form

U [l - Il Unm

where each U;, i = 1,...,U,,, is a CSP process specification of a use case.

Report No. 263, October 2002 UNU/IIST, P.O. Box 3058, Macau


ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔

ld
铅笔


Use-Case Model 15

3.4 Examples of use cases

This subsection gives some small examples of system operations (use cases). We us the two
models Bank; and Banks in Figure 2. Under Banks, we can specify an operation that allows
a customer to withdraw a certain amount of money from his/her.
. def
Withdraws [c : Customer, b : Real] =
Pre : ¢ € Customer;
Post : Holds(c).balance’ = Holds(c).balance — b

Under model Bank; which allows a customer to have no account or up to three accounts, the
withdraw use case should then be defined as

Withdraws[c : Customer, a : Account,b : Real)] =l

Pre : c € Customer A a € Account N Holds(c, a);
Post : a.balance’ = a.balance — b

Model Bank; supports a “withdraw” operation that behaves different from the above one:

Withdraws|c : Customer] =l
Pre : c € Customer A Ja € Account e Holds(c,a);
Post : Let a = choice(Holds(c)) in a.balance’ = a.balance — b

In fact this withdraw operation behaves the same under Bank, and Banks, and it behaves the
same as Withdraw, under Banks. In fact,

Banks |= ¢ € Customer < Ja € Account e Holds(c, a)

We can see that Bank; supports an operation for a customer to transfer money from one account
to another owned by him or her, but Banks cannot. Banks also requires that when a customer
is created, an account must be created for him or her too; and an existing customer cannot open
another account under Banks. Therefore, Bank, supports more operations than Banks. Under
Bankq, the transfer operation can be written as:
Transfer[c: Customer, from,to: Account,b : Real] =
Pre : c € Customer A Holds(c, from) A Holds(c, to);
Post : (from.balance’ = from.balance — b) A (to.balance’ = to.balance + b)

Figure 5 shows the effect of Withdraw; on a state of Banko, and Figure 6 illustrates the effect
of T'ransfer use case on a state of Bank;.
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Pre-Sate Post-Sate
al.:Account

al..Account|
$1000 $1000

Withdraw(X Li $5000)

- a2:Account —~ a2:Account
J.He:Customer J.He:Customer _
$10000

$10000

a3:Account '

- a3:Account

X.Li:Customer X.Li:Customer e
$15000

@ $10000

e

Figure 5: Effect of Withdraw Use Case

Pre-Sate
Post-Sate

al.:Account

Z Liu:Customer - al.:Account

Transfer(J.He,a3,a1,$5000)

a2:Account .
JHeCustomer = a2:Account
$10000 JHe:Customer

$10000

- a3:Account
X.Li:Customer —_— - a3:Account
- X.Li:Customer —
$15000 —

@ $10000

Figure 6: Effect of Transfer Use Case

4 Conclusion & Discussion

We have provided a model to formally combine a conceptual models and a use-cases model of
UML to form a system specification. The model is the well-know notation of transition systems
[IMP81, Bac88| for general reactive systems. This is well justified as an object-oriented system
is in nature a concurrent and reactive system.

The advantage of using a well-established model is that we do not have to develop or study new
semantics and tools for verification. Methods and tool for specification and verification of tran-
sition system are well-established, e.g. [Lam91, MP91, CES86, EGL92]. A system specification
can also be written in terms of Hoar’s CSP that can be defined in terms of a transition system
[HMP94]. Furthermore, this model is already extended to deal with real-time and fault-tolerance
[HMPI1, AL92, LJ99]. The same methods can be used to deal with real-times requirements on
use cases. Also, the model of transition systems is isomorphic to that of the statecharts which
is a part of UML.

The main difference between our work and that in [pG99, EKHGO1, Egy01] is that we study
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Conclusion & Discussion 17

formal semantic relationships between different models of UML, rather than only formalization
of individual diagrams. The paper [HR00] also treats a class as a set of objects and an association
as a relation between objects. However, it does not consider use cases. Our work also shares
some common ideas with [BPP99] in the treatment of use cases. However, we have a different
understand about a conceptual model and have addressed the clear relationships between the
UML models. We have also provided a working procedure for building a system specification
from UML models.

In our related work [LLHO1, LLGO1], we used case studies to demonstrate that the formalization
supports building up a model step by step. In [LLHCO02], a specification language is developed

with which we can write a specification as a Java-like program. Based on the model in this
paper, that language can be extended to deal with concurrency

We have developed a model for requirement analysis in this paper, a specification language in
[LLHCO02] and a model for object-oriented programming in [HLLO1]. Further work is needed
to close the gap between requirement analysis and programming by providing a method to
transform a use-case model to a design model. Progress in this direction is made in [HLLO2].
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