
Innovations Syst Softw Eng (2008) 4:241–248
DOI 10.1007/s11334-008-0062-3

ORIGINAL PAPER

Validation of requirement models by automatic prototyping

Dan Li · Xiaoshan Li · Jicong Liu · Zhiming Liu

Received: 1 July 2008 / Accepted: 26 July 2008 / Published online: 12 August 2008
© Springer-Verlag London Limited 2008

Abstract Prototyping is an efficient and effective way to
understand and validate system requirements at the early
stage of software development. In this paper, we present an
approach for transforming UML system requirement models
with OCL specifications into executable prototypes with the
function of checking multiplicity and invariant constraints.
Generally, a use case in UML can be described as a sequence
of system operations. A system operation can be formally
defined by a pair of preconditions and postconditions speci-
fied using OCL in the context of the conceptual class model.
By analyzing the semantics of the preconditions and post-
conditions, the execution of the operation can be prototyped
as a sequence of primitive actions which first check the pre-
condition, and then enforce the postcondition by transferring
the system from a pre-state to a post-state step by step. The
primitive actions are basic manipulations of the system state
(an object diagram), including find objects and links, create
and remove objects and links, and check and set attribute

D. Li · J. Liu · Z. Liu
The United Nations University,
International Institute for Software Technology,
P. O. Box 3058, Macau, China
e-mail: lidan@iist.unu.edu

J. Liu
e-mail: liujic@iist.unu.edu

Z. Liu
e-mail: lzm@iist.unu.edu

D. Li · X. Li (B)
Faculty of Science and Technology,
University of Macau, Macau, China
e-mail: xsl@umac.mo

D. Li
Guizhou Academy of Sciences, 550001 Guiyang, China

values. Based on this approach, we have developed a tool of
automatic prototype generation and analysis: AutoPA3.0.

Keywords Requirement validation · Prototype · Code
generation · UML · OCL

1 Introduction

At the beginning of software development, capturing and
defining the system requirements are always difficult tasks
for software engineers. Due to the gap between customers
and designers in their understanding of the system and its
requirements, prototyping is an efficient and effective way
to close this gap and validate the customer’s requirements.
The general purposes of building a prototype are now well
understood, e.g. [9,17,18]:

• To validate the requirements by demonstrating a proto-
type to the customers

• To ensure the correct understanding of the requirements
by that the designers and implementors

• To cope with changing requirements better
• To be used for testing

However, the development of a prototype for a system
takes much effort and time; thus it is desirable if a proto-
type can be automatically generated from the requirements
specification. It is well known that a model of requirements
can hardly be entirely executable. It is thus a challenging
and important problem to propose a way of modeling the
requirements that allows us to explore the executable parts
of a model for generating a prototype without the need for
the detailed design.

123

242 D. Li et al.

In [6,10], we formally defined the UML model of require-
ments and proposed an approach to use case driven require-
ments modeling and analysis. Based on that work, in this
paper we present a tool that we have developed for automatic
prototype generation and analysis: AutoPA3.0. AutoPA3.0
can transform a UML model of requirements to an executable
prototype. In [6,10], we define a system requirements model
by a conceptual class model and a use case model. The con-
ceptual class model represents the domain concepts as classes
and their relations as associations. Unlike a class in a design
class model, a class in a conceptual class model does not
have methods. The conceptual class diagram together with
annotation assertions (called comments informally in UML)
imposes constraints on the allowable states of the system.
This conceptual class model determines the static structure
of domain that is to be realized by a software structure. The
use case model describes the business processes and their
dependency relations that are to be realized as computa-
tion processes in the software system. A number of objects
associated in the conceptual class diagram are to be jointly
involved in carrying out or realizing a use case. The effect
of a use case can be generally decomposed into a number
of primitive actions which are finding object or link, check-
ing attribute values, creating a new object or link, updating
attribute values, and removing an existing object or link [5].
A system requirements model is consistent if the conceptual
class diagram supports the realization of all use cases in the
use case model and all executions of use cases preserve the
state constraint of the conceptual class model [10].

The Object Constraint Language (OCL) [2] as a part of
the UML 2.0 standard is a language allowing the specifica-
tion of formal constraints on UML models. It is designed as
a formal language to express side-effect-free constraints pre-
cisely within UML models. Thus, OCL is a natural choice
for the specification of annotation assertions and precon-
ditions and postconditions. OCL is based on mathematical
set theory and predicate logic, and it has a formal mathe-
matical semantics. Instead of using mathematical symbols,
OCL uses plain ascii words that express the same concepts.
OCL is also expressive enough for the specification of state
constraints and preconditions and postconditions of use case
operations.

The prototype generator takes as its inputs a conceptual
class model in the form of a UML class diagram and use
cases specified in OCL, and generates an executable pro-
gram as the prototype of the system. In this paper, we focus
on the discussion about how to transform use cases speci-
fied in OCL into a sequence of primitive actions. The key
problem is how to analyze the operational semantics of OCL
specifications, and then translate them into a well-ordered
sequence of primitive actions. A set of templates and rules
are presented for the algorithm of prototype generation. For a
given OCL expression, it can be parsed to an abstract syntax

tree (AST). Each fragment of the OCL expression, i.e., sub-
expression, corresponds to a sub-tree of the AST. Applying
the given templates and rules to the fragments of OCL expres-
sions, one then translates their implicit operational semantics
to the corresponding primitive actions.

The UML/OCL model can be prepared by a general UML
CASE tool, such as MagicDraw, and exported as an XMI2.1
file. The prototype tool first parses the XMI file into an
instance of UML/OCL metamodel, and then transforms each
use case into a sequence of primitive actions. Other necessary
functions of the prototype tool, such as generating extra prim-
itive actions by post processing, generating declarations of
a prototype, generating use case handlers and implementing
the GUI interface of a prototype, have already implemented
in old versions’ development of AutoPA and previous work
[7,8]. Here we omit them due to the page limitation.

The rest of this paper is organized as follows. Section 2
briefly introduces the use case model and the conceptual class
model of the system requirements model. And then Sect. 3
focuses on how to transform OCL expressions to primitive
actions by the given four templates and ten rules. Section 4
presents the system prototype with AutoPA3.0 for the library
case study. Some interesting ideas of tool implementation
are briefly discussed in Sect. 5. Finally, Sect. 6 concludes the
paper and discusses some further work.

2 System requirements model

A system requirements model consists of a conceptual class
model and a use case model [10]. The conceptual class model
is a class diagram that describes the application domain in
terms of classes (also called concept classes, because no
methods are contained in them) and associations between
these classes. A class represents a set of conceptual objects
and an association determines how the objects are related.
Classes may have attributes whose values determine the prop-
erties of the objects of the class. The use case model includes
a set of use case diagrams. Each use case in a use case dia-
gram represents a required functional service that the system
is expected to provide for certain kinds of users called actors.
A use case can be defined as a sequence of system operations
or included basic use cases by a system sequence diagram
or an activity diagram. Such a system operation or an activ-
ity can be specified formally as a pair of preconditions and
postconditions.

By decomposing the preconditions and postconditions of
the system operations, a use case can be transformed into
a sequence of primitive actions. Then these actions can be
transformed into Java code. Thus, a prototype of the system
requirements model can be used for demonstrating the exe-
cution of each use case as a sequence of primitive actions to
the end-users for requirements validation.

123

Validation of requirement models by automatic prototyping 243

RoutineCheckAllUsers

SearchReservations

RemovePublication

ListUserCopyBooks

RenewUserLoans

MakeReservation

RemoveUser

GetReservation

AddPublication

AddUser

BorrowCopys

RenewLoan
SearchBooks

RemoveCopy

AddCopy

LendCopy

ReturnCopy

CheckUserLibrarian

Timer

User

<<include>>

Fig. 1 Use case diagram of a library system

Copy

+available : Boolean = true
+id : String

User

+copyNum : Integer = 0
+id : String

Loan

+dueDate : Date
+id : String

Publication

+info : String
+id : String

Reservation

+id : String

Borrows
0..11

IsHeldFor

0..1

1

Takes

1

0..10

CopyOf

1

0..*

Reserves

0..*1
Makes

10..3

Fig. 2 Conceptual class diagram of a library system

Here we use a library system as a case study to illustrate
the feasibility of our approach as well as the efficiency of
tool AutoPA3.0. There are some quite complex use cases in
the system, such as MakeReservation, RenewUserLoans, and
BorrowCopys. The use case diagram and conceptual class
diagram are shown in Figs. 1 and 2, respectively.

The following two sub-sections briefly introduce the con-
ceptual class model and use case model formally using the
formal method we proposed. For more details, please refer to
[4,10,11]. The work makes us understand the formal seman-
tics of UML models precisely, as well as the semantics of
OCL. Therefore, it is easy for us to translate previous rCOS
specification of the library system into OCL.

2.1 Conceptual class model

A conceptual class model is defined as C M = (D, I), where
D is a class diagram and I is a state constraint written as a
predicate of attributes and associations [10]. The conceptual
class diagram D identifies the classes and their associations,
and consists of following three parts:

• CN : A set of classes in the diagram.
• Attr: Attributes of class. For each class C ∈ CN , Attr(C)

represents the set of the attributes of class C in the form
of {〈a1 : T1〉, . . . , 〈am : Tm〉}, where Ti is the type of
attribute ai . The type of an attribute is always primitive,
such as String, Boolean, and Integer. We assume that a
use case can access any attribute of the relevant classes.

• AN : A set of associations. An association takes the form
of A : 〈C1, C2〉, where A is the identifier of the asso-
ciation and C1, C2 ∈ CN are the roles which are the
two classes associated by the association. A role Ci has
a multiplicity which is denoted as a set of integers.

An object of a class has an identity and a state which
assigns values to the attributes of the class of the object.
Let O(C) denote the set of all possible objects of class C.
For each class C in the class diagram D, we use the capital
letter (not bold) C to represent the variable which records the
current existing objects of class C in the system. The type of
C is the powerset P(O(C)). Let CVar be the set of all class
variables of a class diagram

CVar � {C | C ∈ CN }
Similarly, for an association A ∈ AN , we use A to denote

the variable which records the current existing links between
objects associated by A, and let

AVar � {A | A : 〈C1, C2〉 ∈ AN }
The type of A is the powerset P(O(C1) × O(C2)). For a

class diagram D, a state or and object diagram S of D is a
well-typed mapping from the variables CVar ∪ AVar to their
object space such that for each association A : 〈C1, C2〉

A ⊂ C1 × C2 means that existing links only link existing
objects.

Also, for each C ∈ CVar and each attribute a ∈ Attr(C),
S[C].a is the attribute value of object S[C]. Therefore, S also
maps the attribute variable C.a to a value. Let Var be the set

Var � CVar ∪ AVar

∪{C.a | C ∈ CVar ∧ a ∈ Attr(C)}
A state constraint is a predicate over Var whose truth value

can be defined over the state space (the set of all object dia-
grams) of D. The multiplicity invariants of an association A
such that Multi(A) = (M1, M2), where M1 (or M2) forms
an interval of integers such as “0 . . . 1”, “1 . . . n”, etc., can
be specified as a state constraint

∀o ∈ C1 · |{o1 | 〈o, o1〉 ∈ A}| ∈ M2∧
∀o ∈ C2 · |{o1 | 〈o1, o〉 ∈ A}| ∈ M1

where | · | is the function that returns the number of elements
of a set.

123

244 D. Li et al.

For example, the conceptual class model of the library
system shown in Fig. 2 can be partly defined as follows.

CN ={ Publication, User, Copy, Reservation, Loan}
Attr(User) = { 〈 id : String 〉, 〈 copyNum : Integer 〉 }
Attr(Copy) = { 〈 id : String 〉, 〈 available : Boolean 〉}

AN = { CopyOf : 〈 Copy, Publication 〉,
Borrows : 〈 Loan, Copy 〉,
Takes : 〈 Copy, Publication 〉,
IsHeldFor : 〈 Copy, Reservation 〉,
Reserves : 〈 Publication, Reservation 〉,
Makes : 〈 User, Reservation 〉 }

2.2 Use case model

Informally, a use case model consists of a use case diagram
and a textual description which defines the behavior of each
use case. Formally, a system operation of a use case can be
defined as a canonical form [11]:

op � pvar x : Tx ; rvar y : Ty

Pre : p(v) Post : R(v, v′)

where pvar andrvar declare the input parameters and the
result parameters. This specification is also used in the
method of design by contract. The precondition p(v) and
postcondition R(v, v′) use variables v in Var ∪ x that are
declared in the conceptual class diagrams, as well as the input
parameters x to describe the pre-state of the operation and
the primed version of Var ∪ y to describe the post-state of
the operation. The precondition p(v) must be true before the
successful execution of the operation and the postcondition
R(v, v′) must be true after the execution of the operation.
The preconditions and postconditions are described using a
first-order logic-based formal notation.

We can define the specification of use case AddCopy (copy:
Copy, pub: Publication) in rCOS [4] specification as fol-
lows, whose function is to add a new copy of a publication
to the library.

AddCopy � pvar copy : Copy, pub : Publication;
Pre : copy /∈ Copy ∧ pub ∈ Publication
Post : Copy′ = Copy ∪ {copy}

∧ copy.available′ = true
∧ CopyO f ′ = CopyO f ∪ {〈copy, pub〉}

And we can write the equivalent formal definition of use
case AddCopy in OCL as follows.

context Usecase::AddCopy(copy: Copy, pub: Publication)
Pre: Publication -> includes(pub)

and Copy -> excludes(copy)
Post: copy.oclIsNew()

and copy.available = true
and copy.CopyOf = pub

3 Transform OCL expressions to primitive actions

OCL has proven to be a very versatile constraint language that
can be used for different purposes in different domains [12].
In order to enhance the capacity and usability of our prototype
AutoPA tool, OCL is used to specify the system constraints
and preconditions, postconditions of system operations in
UML requirement models. In this section, we focus on how
to transform OCL expressions into primitive actions.

Based on Octopus [15], an Eclipse-based BSD-licensed
tool supporting UML class models enriched with OCL 2.0,
an OCL parser and semantic analyzer are used in our tool
to build an internal representation, known as abstract syntax
trees (ASTs), of OCL expressions. ASTs contain the concepts
referring to both the syntax of expressions and its conceptual
model.

For example, the precondition of use case AddCopy in
Sect. 2.2 states that the object pub must be in the collection set
of publication and copy must be a new one. Its corresponding
AST is shown in Fig. 3. And the AST of the postcondition is
in Fig. 4.

Transforming the OCL specification of a system operation
into a sequence of primitive actions should start from the
AST of the precondition first, and then to the AST of the
postcondition. By analyzing the executable parts of OCL, we
find that there are four kinds of templates (T1,…,T4, shown
as follows) in their corresponding fragments of AST. The
algorithm first tries to match each fragment of AST with the
given four templates. And we present ten rules (R1,…,R10)
for the ten primitive actions as follows. Templates and rules
are derived from two aspects of OCL expression: syntax and
semantics. If a rule can be applied to an AST fragment of
OCL expression, then the primitive action can be obtained
for the corresponding OCL sub-expression.

3.1 Find object action

Primitive action FindObject(ObjId,Classifier) is to check
whether a given instance object with identifier ObjId of class

Fig. 3 Precondition of use case AddCopy

123

Validation of requirement models by automatic prototyping 245

Fig. 4 Postcondition of use case AddCopy

Classifier exists in the current system state. If the object does
not exist in the system, it means that the corresponding pre-
condition will be false, and the prototype should go to excep-
tional handling.

For an AST fragment fg of OCL expression, T(fg) denotes
its corresponding template, could be one of T1,…,T4. For
example, if T(fg) = T1 and the contents of the fragment para-
meters also satisfy the given conditions in rule R1, then the
corresponding primitive action of the fragment fg is FindOb-
ject(ObjId,Classifier).

R1 �

T(fg) = T1 ∧ OP1 ∈ {asSet, asBag, asSequence}
∧OP2 ∈ {includes, notEmpty, one}

FindObject(V, C)

That is to say, R1 can be used to generate the FindOb-
ject(ObjId,Classifier) action from the OCL expression like
Classifier-> includes(ObjId). Similarly, we can simply give
the other nine rules as follows.

3.2 Find no-object action

Primitive action FindNoObject(ObjId,Classifier) checks
whether a given object ObjId of class Classifier does not
exist in the current system state.

R2 �

T(fg) = T1 ∧ OP2 ∈ {is Empty, excludes}
∧OP1 ∈ {asSet, as Bag, asSequence}

FindNoObject(V,C)

3.3 Find link action

Primitive action FindLink(AsName, SObjId, TObjId) is to
check whether there exists a given link of the association
AsName from object with identifier SObjId to object with
identifier TObjId.

R3 �
T(fg) = T2 ∧ OP ∈ {=, includes, not Empty}

FindLink(A,V1,V2)

3.4 Find no-link action

Primitive action FindNoLink(AsName,SObjId,TObjId) is to
check whether a given link of the association AsName from
object with identifier SObjId to object with identifier TObjId
does not exist.

R4 �
T(fg) = T2 ∧ OP ∈ {is Empty, excludes}

FindNoLink(A,V1,V2)

3.5 Check attribute values action

Primitive action CheckAttr(ObjId,AtName,Operator,Value)
is to check whether the value of attribute AtName of the object
ObjId satisfies the relation with the given operation with the
value

R5 �
T(fg) = T3 ∧ OP ∈ {=,>,<,>=,<=}

CheckAttr(V,A,OP,Value)

3.6 Create object action

Primitive action CreateObject(ObjId,Classifier) is to create
a new object of class classifier with the identifier ObjId.

123

246 D. Li et al.

R6 �
T(fg) = T4 ∧ OP ∈ {ocl I s New, including}

CreateObject(V, V.Type)

3.7 Create link action

Primitive action CreateLink(AsName, SObjId, TObjId) is to
create a new link of association AsName between two objects
with identifiers SObjId and TObjId.

R7 �
T(fg) = T2 ∧ OP ∈ {=, including}

CreateLink(A,V1,V2)

3.8 Set attribute value action

Primitive action SetAttr(ObjId,AtName,Value) is equivalent
to setting the attribute AtName with the given Value.

R8 �
T(fg) = T3 ∧ OP ∈ {=}

SetAttr(V,A,Value)

3.9 Remove link action

Primitive action RemoveLink(AsName,SObjId,TObjId) is to
remove the given link of association AsName between two
given objects with identifiers SObjId and TObjId.

R9 �
T(fg) = T2 ∧ OP ∈ {is Empty, excludes}

RemoveLink(A,V1,V2)

3.10 Remove object action

Primitive action RemoveObject(ObjId,Classifier) is to
remove a given object with identifier ObjId of class Clas-
sifier.

R10 �

T(fg) = T1 ∧ OP2 ∈ {is Empty, excludes}
∧OP1 ∈ {asSet, as Bag, asSequence}

RemoveObject(V,C)

3.11 Example of use case AddCopy

Let us consider the OCL specification of use case AddCopy
in Sect. 2. After parsing and semantic analysis, the corre-
sponding ASTs of its preconditions and postconditions are
shown in Fig. 3 and Fig. 4, respectively.

For the AST of precondition in Fig. 3, the generator first
starts from the root node ➀, and finds the template T1

matched. The primitive action FindObject(pub,“Publication)
is first generated by applying rule R1. And then rule R2 can
apply to the next node ➁, FindNoObject(copy,“Copy”) can be
obtained.

Similarly, for the AST of the postcondition in Fig. 4, the
generator starts from node ➀ to nodes ➁ and ➂. The rules R6,
R8 and R7 can be applied, respectively. Three correspond-
ing primitive actions: CreatObject, SetAttr, and CreatLink
can be generated. Therefore, for use case AddCopy, its cor-
responding sequence of primitive actions can be generated
as follows:

1. FindObject(pub,Publication);
2. FindNoObject(copy,Copy);
3. CreateObject(copy,Copy);
4. SetAttr(copy,available,true);
5. CreateLink(CopyOf,copy,pub);

4 System prototype with AutoPA3.0

A system prototype should demonstrate the interactions
between actors and system for each use case. A system oper-
ation is formalized by a pair of preconditions and postcondi-
tions. And each use case is defined as a sequence of system
operations. From the semantics of the use case, we can trans-
form the specification of preconditions and postconditions
into a sequence of primitive actions. Then, the execution of
the sequence of primitive actions is equivalent to the execu-
tion of the use case [11].

An algorithm was developed in AutoPA 2.0 to generate the
sequence of primitive actions for a use case [7]. The behavior
of checking a precondition can be translated into a sequence
of primitive actions, which belong to the following five kinds
of query actions on system state: FindObject, FindNoObject,
FindLink, FindNoLink and CheckAttr. These five kinds of
actions are side-effect-free queries that don’t change the sys-
tem state. Similarly, the postcondition can be translated into
a sequence of primitive actions, which belong to the follow-
ing five kinds of actions: CreatObject, CreatLink, SetAttr,
RemoveLink, RemoveObject. However, they are not side-
effect-free primitive actions, whose execution will change
system states. Therefore, with the additional three more steps:
generating declaration from conceptual class model, gener-
ating use case handlers and generating GUI interface, a pro-
totype of the system requirements model can be generated
automatically in Java.

For the case study of the library system, the prototype
interface is shown in Fig. 5, and the interface and prototyp-
ing execution of use case AddCopy are shown in Fig. 6 and
Fig. 7. In addition, the prototype also has the functionality of
checking multiplicities and invariants on system states auto-
matically, shown in Fig. 7.

123

Validation of requirement models by automatic prototyping 247

5 Tool implementation

As an extension of AutoPA2.0, we have improved the tool by
adapting the techniques of the Octopus tool [15] for trans-
lating from OCL expressions into primitive actions of the
prototype.

Our implementation follows the typical structure of a
translator, consisting of four processes: lexical analysis, pars-
ing, semantic analysis and translation.

The lexical analyzer and parser generate an AST from
the input XMI file generated by general UML CASE tool,
such as MagicDraw; syntactic errors are reported by these
processes. The next process, semantic analysis, requires the
input of an AST and the conceptual class model to which
OCL expressions are attached. Semantic analysis will find
static semantic errors. Finally, we provide an algorithm for

Fig. 5 Prototype interface of library system

Fig. 6 Interface of use case AddCopy

Fig. 7 Prototyping execution of use case AddCopy

transforming the result of semantic analysis into the primitive
actions.

Based on AutoPA2.0, we mainly designed an OCL inter-
preter in the new version, and plugged it into AutoPA2.0. And
we also improved the functionality for dealing with complex
use cases with iteration and choice decision control as well
as the constraints checking.

6 Conclusion and future work

In this paper, we mainly discussed how to analyze and trans-
late OCL expressions to the primitive actions. With our tool
support, all use cases of the library system can be gener-
ated to the executable prototype automatically. Therefore,
validation of requirement models by automatic prototyping
becomes possible. And the tool also provides the function-
ality for checking the system multiplicities and invariants,
which are specified OCL.

The main contribution of AutoPA3.0 compared with
AutoPA2.0 [7], is that OCL is introduced for specifying pre-
conditions and postconditions of system operations as well
as constraints, rather than using four sets: (preObjects, pre-
Links, postObjects, and postLinks), which had to provided to
AutoPA2.0 tool by translating from the formal specification
manually. Thus, AutoPA3.0 becomes more automatic and
makes contract-based design [13,14] even more applicable.
Actually the expressive ability of OCL is also larger than
the expressiveness of Four Sets in AutoPA2.0. In addition,
for complex use cases, AutoPA3.0 becomes more powerful
than before because the control information among primitive
actions can be obtained from their system sequence diagrams
or activity diagrams.

Compared with other prototype tools, the advantage of
AutoPA is that it can transfer the executable parts of require-

123

248 D. Li et al.

ments model directly, rather than using the design models
like design sequence diagrams and state diagrams, or live
sequence charts in [16,3]. Tool USE [19] with many papers
[1] mainly focuses on validating UML models with OCL con-
straints by testing and animation on the given system states
(object diagrams). However, AutoPA is mainly designed for
generating prototypes automatically, although some func-
tions like tool USE can also be provided by our tool, such as
checking constraints on the given system states.

At present some OCL expressions with constructs like
TupleLiteralExp and MessageExp, can not be handled in our
current tool. Actually, lots of use cases of information data-
base systems are executable, because their behaviors can
be decomposed or defined by the primitive actions. How-
ever, the implicit style equation about several attributes like
obj1.x ′4 + obj2.y′4 = obj3.z′4 is obviously not executable.
The complex algorithms of special problems like tax calcu-
lation should be provided explicitly in system design mod-
els. For some non-executable parts, software designers can
develop manually, and then integrate them with the generated
prototype from the executable parts of the system.

Our future work is to improve the generator algorithm
to cover even larger executable set of OCL, mainly for post-
conditions. Since the formal syntax of the rCOS specification
language [4] is now issued, we will extend our work to sup-
port rCOS and system automated testing. Meanwhile, we will
apply the tool to more case studies as well as practical sys-
tems. Afterwards, tool AutoPA will be put onto the Internet
for the public.

Acknowledgments Many thanks to the referees and Mr. Chris George
for their valuable comments. This work is supported by the projects of
HighQSoftD and HTTS of Macao Science and Technology Develop-
ment Fund, and NSF of China No. 90718014.

References

1. Gogolla M, Büttner F, Richters M (2007) Use: a uml-based spec-
ification environment for validating uml and ocl. Sci. Comput.
Program 69(1-3):27–34

2. Object Management Group Object constraint language specifica-
tion, http://www.omg.org/docs/ptc/03-10-14.pdf

3. Harel D, Marelly R (2003) Come, let’s play, scenario-based pro-
gramming using LSCs and the play-engine. Springer, Heidelberg

4. He J, Li X, Liu Z (2006) rcos: a refinement calculus of object
systems. Theor. Comput. Sci 365(1–2):109–142

5. Larman C (2001) Applying UML and patterns. Prentice-Hall Inter-
national, Englewood Cliffs

6. Li X, Liu Z, He J (2001) Formal and use-case driven require-
ment analysis in UML. In: COMPSAC01. IEEE Computer Society,
Illinois, pp 215–224

7. Li X, Liu Z (2008) Prototyping system requirements model. Electr.
Notes Theor. Comput. Sci 207:17–32

8. Li X, Liu Z, He J, Long Q (2004) Generating a prototype from a
UML model of system requirements. In: Ghosh RK, Mohanty H
(eds) ICDCIT, LNCS 3347. Springer, Heidelberg, pp 255–265

9. Lichter H, Schneider-Hufschmidt M, Zullighoven H (1994)
Prototyping in industrial software projects—bridging the gap
between theory and practice. IEEE Trans Softw Eng 20:825–832

10. Liu Z, He J, Li X, Chen Y (2003) A relational model for for-
mal object-oriented requirement analysis in uml. In: Dong JS,
Woodcock J (eds) ICFEM, LNCS 2885. Springer, Heidelberg,
pp 641–664

11. Liu Z, Li X, He J (2002) Using transition systems to unify uml
models. In: George C, Miao H (eds) ICFEM, LNCS 2495. Springer,
Heidelberg, pp 535–547

12. Markovic S, Baar T (2006) An ocl semantics specified with qvt.
In: Nierstrasz O (ed) Models, LNCS 4199. Springer, Heidelberg,
pp 661–675

13. Meyer B (1997) Object-oriented software construction, 2nd edn.
Prentice Hall PTR, Englewood Cliffs

14. Mitchell R, McKim J (2002) Design by conctract by example.
Addison-Wesley, Reading

15. Objecten K Octopus: Ocl tool for precise uml specifications. http://
octopus.sourceforge.net/

16. Plosch R (2004) Contracts, scenarios and prototypes: an integrated
approach to high quality software. Springer, Heidelberg

17. Smith MF (1991) Software prototyping: adoption, pratice and
management. McGraw-Hill, New York

18. Sommerville I (2004) Software engineering, 7th edn. Addison-
Wesley, Reading

19. USE A uml-based specification environment. http://www.db.
informatik.uni-bremen.de/projects/use/

123

http://www.omg.org/docs/ptc/03-10-14.pdf
http://octopus.sourceforge.net/
http://octopus.sourceforge.net/
http://www.db.informatik.uni-bremen.de/projects/use/
http://www.db.informatik.uni-bremen.de/projects/use/

	Validation of requirement models by automatic prototyping
	Abstract
	1 Introduction
	2 System requirements model
	2.1 Conceptual class model
	2.2 Use case model

	3 Transform OCL expressions to primitive actions
	3.1 Find object action
	3.2 Find no-object action
	3.3 Find link action
	3.4 Find no-link action
	3.5 Check attribute values action
	3.6 Create object action
	3.7 Create link action
	3.8 Set attribute value action
	3.9 Remove link action
	3.10 Remove object action
	3.11 Example of use case AddCopy

	4 System prototype with AutoPA3.0
	5 Tool implementation
	6 Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

