
A Model of Component-Based Programming

Xin Chen1,4, Jifeng He2, Zhiming Liu ?1, and Naijun Zhan ??1,3

1 International Institute for Software Technology, United Nations University, Macau
{chenxin,lzm}@iist.unu.edu

2 Software Engineering Institute, East China Normal University, Shanghai, China
jifeng@sei.ecnu.edu.cn

3 Lab. of Computer Science, Institute of Software, CAS, Beijing, China
znj@ios.ac.cn

4 Department of Computer Science and Technology, Nanjing University, China

Abstract. Component-based programming is about how to create ap-
plication programs from prefabricated components with new software that
provides both glue between the components, and new functionality. Mod-
els of components are required to support black-box compositionality and
substitutability by a third party as well as interoperability. However, the
glue codes and programs designed by users of the components for new ap-
plications in general do not require these features, and they can be even
designed in programming paradigms different from those of the compo-
nents. In this paper, we extend the rCOS calculus of components with a
model for glue programs and application programs that is different from
that of components. We study the composition of a glue program with
components and prove that the components glued by the glue program
yield a new component.
Keywords: Components, Contracts, Protocols, Composition, Glue Codes,
Application Programs, Refinement.

1 Introduction

Component-based development (CBD) is about how to create new software by
combining prefabricated components with new programs that provide both glue
between the components, and new functionality [1]. Furthermore, there seems
to be no disagreement on the following interrelated properties that components
enjoy.

1. Black-box composability, substitutability and reusability: there is no need to
know the design and the implementation when composing a component with
other parts of the system, substituting a component with another one or
reusing it in another application.

? The author is partly supported by HighQSoftD and HTTS funded by Macao Sci-
ence and Technology Development Fund, NSF Project 60573085 and 863 of China
2006AA01Z165

?? The author is partly supported by the projects NSFC-60493200, NSFC-60421001,
NSFC-60573007 and NKBRPC-2002cb312200.

2. Independent development: components can be designed, implemented, veri-
fied, validated and deployed independently.

3. Interoperability: components can be implemented in different programming
languages and paradigms, but they can be composed, be glued together and
cooperate with each another.

These features require that a component has a black-box specification of what it
provides to and what it requires from its environment. In rCOS [6, 5], the provided
services and required service of a component are given by the contract of the
provided interface and the contract of the required interface of the component,
respectively. Thus, the contracts together with the interfaces of a component
provide a black-box specification of the component. The model of contracts in
rCOS also defines the unified semantic model of implementations of interfaces
in different programming languages, and thus clearly supports interoperability
of components and analysis of the correctness of a component with respect to
its interface contract. The theory of refinements of contracts and components in
rCOS characterizes component substitutivity, as well as supporting independent
development of components. Compositions are defined in rCOS for chaining
the provided interface of one component to the required interface of another,
renaming and hiding interface operations of a component.

However, there is no precise characterization for the “new program” that
provides both “glue” between the components, and “new functionality”. In this
paper, we introduce the notion of processes into rCOS. Like a component, a pro-
cess has an interface declaring its local variables and methods, and its behavior
is specified by a process contract. Unlike a component that passively waits for
a client to call its provided services, a process is active and has its own control
on when to call out or to wait for a call to its provided services. For such an
active process, we cannot have separate contracts for its provided interface and
required interface, because we cannot have separate specifications of outgoing
calls and incoming calls [6]. For simplicity, but without losing expressiveness,
we assume a process like a Java thread does not provide services and only calls
operations provided by components. Therefore, processes can only communicate
via shared components. The composition of two processes will be by interleaving,
and produce a new process.

Let C be the parallel composition of a number of disjoint components Ci,
i = 1, . . . , k. A glue program for C is a process P that makes calls to the oper-
ations in set X provided by C. The synchronization composition P ‖ [X] C of C

and P is defined similarly to the alphabetized parallel in CSP [7, 12]. The gluing
composition is defined by hiding the synchronized methods between the com-
ponent C and the process P . We show that (P ‖ [X] C)\X is a component. We
will study the algebraic laws of the composition of processes and components as
well.

We also model an application program as a set of parallel processes that make
use of the services provided by components. As processes only interact with com-
ponents via the provided interfaces of the components, interoperability is thus
supported as the contracts which define the semantics of the common interface

description language (IDL), even though components, glue programs and compo-
nents are not implemented in the same language. Analysis and verification of an
application program can be performed in the classical formal frameworks, but at
the level of contracts of components instead of implementations of components.
The analysis and verification can reuse any proved properties about the compo-
nents, such as divergence freedom and deadlock freedom of the implementation
of the components, without the need to reprove them.

Due to the limit of space, we omit all proofs in this paper, the interesting
reader can be referred to [3] for the proofs.

The rest of this paper is organized as follows. Section 2 contains a brief
summary of rCOS. In section 3, we define the model of process and gluing
composition. As well, we prove that gluing components by a process indeed
forms a new component and then present a method to calculate the contract of
the resulted component. Section 4 presents a comparison between our work to
the relative work. Section 5 draws a short conclusion and discusses the future
work.

2 Interface, Contracts and Components

This section uses examples to briefly review the main modelling elements of the
component model in rCOS. The read can be referred to [6] for details.

2.1 Preliminaries

For convenience, we first introduce some notions of traces. Given an alphabet Σ,
Σ∗ denotes all finite sequences generated from Σ, while Σ∞ denotes all infinite
sequences generated from Σ. Given a sequence s, we use |s|, tail(s), and head(s)

to denote the length, tail, and head of s, respectively. s1 • s2 denotes the con-
catenation of the sequences s1 and s2, and s1 ¹ s2 denotes that s1 is a prefix of
s2. s ¹ A stands for the sequence obtained by removing all events not in Σ from
s. If A is a singleton {a}, s ¹ A is abbreviated as s ¹ a. s ↓ b counts the number of
occurrences of b in s.

2.2 Interface

An interface I = 〈FDec, MDec〉 declares a set of fields and a set of operation sig-
natures without providing any semantic information of their designs and imple-
mentations. Here, for the sake of encapsulation, all fields declared in an interface
are assumed to be local to the underpinning contract and component and there-
fore are not accessible to its environments. The environments can only access the
declared fields via the declared methods1. Each field in FDec has the form x : T

of a variable with its type, and an operation m(in inx,out outx) ∈ MDec declares

1 In fact, such an assumption can be relaxed. In many cases, the relaxation will improve
the ease in developing complex systems, typically, embedded systems.

a name for the operation and its input parameters and output parameters with
their types. For simplicity, we do not deal with data types formally and assume
that a method has at most one input parameter and one output parameter and
is written in the form m(inu,out v) in what follows.

Example 1. Consider a buffer of integers. It has an interface that enables the
user to put data in and get data from the buffer:

B1=〈buff :seq(int), {put(in x :int), get(out y :int)}〉,

where seq(int) is the type of finite sequences of integers.

Interfaces can be merged and extended by adding new operations [6].

2.3 Contract

A contract of an interface of a component provides semantic information that
specifies how the interface can be used and allows us to define the dynamic
behavior of the component on the interface. Here, we are only concerned with
components of concurrent and distributed software systems and thus only in-
terested in the functionality and interaction protocols of components, leaving
real-time and other non-functional quality of services (QoS) out of the scope of
this paper. Formally, a contract is a tuple Ctr(I, Init ,MSpec,Prot), where

– I is an interface;
– Init is a predicate that defines the initial values of the fields in I .FDec;
– MSPec assigns each operation m(x; y) a static functionality specification as

pair of pre and postconditions of the form p(x, I .FDec) ` R(x, I .FDec, y′, I .FDec′),
where non-primed and primed variables represents the values of the vari-
ables in the pre and post state of the execution of the operation, respec-
tively. If the precondition p(x, I .FDec) is true, the pair will be abbreviated
as ` R(x, I .FDec, y′, I .FDec′) ;

– Prot is called the protocol of the interface, which is a set of finite sequences
of method call events. Each sequence is of the form m1, . . . , mk.

Example 2. For the buffer interface in Example 1, the following contract CtrB

defines a one-place buffer:

Init
def
= |buff |=0

MSpec(put(in x:int))
def
= (` buff ′=〈x〉 • buff)

MSpec(get(out y:int))
def
= (` buff ′ = tail(buff) ∧ y′ = head(buff))

Prot
def
= (put; get)∗+(put; (get; put)∗)

In many applications, the protocols can be specified as regular expressions
and in such a case protocol compatibility can be automatically checked.

A pair of pre and postconditions is called a design in [8]. It is proven there
that designs are closed under all imperative programming constructors such
as assignment, sequential composition, conditional choice, recursion and so on.

These constructors are all monotonic with respect to the refinement order among
designs. In [4], we showed how to define an object-oriented program as a design
too. Therefore, the model of contracts of interfaces can be safely used as a
common semantic model of different programming languages and paradigms to
support interoperability of components.

For theoretical treatment of contracts and their refinement, the designs of
operations and the interaction protocol can be combined by the notion of guarded
designs [6].

A guarded design is a pair of a guard g and a design D, denoted by g&D,
and defined by D ¢ g ¤ Idle2, meaning that the caller is forced to wait if the
guard condition does not hold when invoking the method, otherwise it behaves
as the design D. We have proven in [6] that guarded designs are closed under
all programming constructors, and these constructors are all monotonic with
respect to the refinement order.

A reactive contract is a triple Ctr = (I, Init ,MSpec), where MSpec assigns each
operation m(x; y) in the interface I with a guarded design. In what follows, we
use gm to denote the guard part of MSpec(m), for any m ∈ MDec.

Example 3. The contract in Example 2 can have an equivalent reactive version:

Init
def
= |buff |=0

MSpec(put(inx:int))
def
= (|buff | = 0)&(` buff ′ = 〈x〉)

MSpec(get(out y:int))
def
= (|buff | = 1)&(` buff ′ = 〈〉 ∧ y ′ = head(buff))

Given a reactive contract Ctr = (I , Init ,MSpec), its dynamic behavior is de-
fined by its sets of failures and divergences (F(Ctr), D(Ctr)). Each method call
m(u, v) includes two events ?m(u) for receiving an invocation and m(v)! for send-
ing a return to the caller. Therefore, each trace in failures and divergences is of
the form ?m1(u1), m1(v1)!, . . . , ?mn(un), mn(vn)! or ?m1(u1), m1(v1)!, . . . , ?mn(un).
The failures and divergences are defined as:

– D(Ctr) consists of the sequences of interactions between Ctr and its environ-
ment which lead the contract to a divergent state.

– F(Ctr) is the set of pairs (s, X), where s is a sequence of interactions between
Ctr and its environment, and X denotes a set of methods to which the
contract may refuse to respond after executing s. A failure (s, X) should be
one of the following cases:
1. s = 〈?m1(x1), m1(y1)!, . . . , ?mk(xk), mk(yk)!〉 and ∀m ∈ X .¬gm, k ≥ 0. If k = 0

then s = 〈〉. This corresponds to the case when the system reaches a state
where none of the guards of the events in X is true, after executing s.

2. s = 〈?m1(x1), m1(y1)!, . . . , ?mk(xk)〉 and mk! 6∈ X. This corresponds to the
case when the operation mk is waiting to output its result, performing
any of other operations will result in a failure, because it is assumed
that the execution of a method is atomic in the sense that the method is
either executed completely, or not at all, no other methods can interrupt
its execution.

2 This is the shorthand of if g then D else Idle.

3. s = 〈?m1(x1), m1(y1)!, . . . , ?mk(xk)〉 and X could be any set of methods,
where the execution of mk enters a waiting state.

4. Finally, s ∈ D(Ctr) and X can be any set of methods. That is, a divergent
trace with any set of methods always forms a failure.

Example 4. The dynamic behaviour of the buffer of Example 3 can be described
by the following failure/divergence model:

D = ∅,
F = {(s, X) | ∃k ∈ N.((s = 〈S(k)〉 ∧X ⊆ {?put})

∨(s = 〈S(k), ?put(xk+1)〉 ∧X ⊆ {put!})
∨(s = 〈S(k), ?put(xk+1), !put()〉 ∧X ⊆ {?get})
∨(s = 〈S(k), ?put(xk+1), put()!, ?get()〉 ∧X ⊆ {get!}))},

where

S(k)
def
= ?put(x1), put()!, ?get(), get(x1)!, ...?put(xk), put()!, ?get(), get(xk)!,

Y
def
= {?put, put!, ?get, get!} − Y.

The following notion of refinement allows us to compare and substitute com-
ponents according to their contracts.

Definition 1 Let Ctr1 and Ctr2 be two contracts. We say that Ctr1 is refined
by Ctr2, denoted by Ctr1 v Ctr2, if

1. Ctr2 provides the same services as Ctr1, i.e. Ctr2.MDec = Ctr1.MDec,
2. Ctr2 is not easier to diverge than Ctr1, i.e. D(Ctr2) ⊆ D(Ctr1), and
3. Ctr2 is not easier to deadlock than Ctr1, i.e. F(Ctr2) ⊆ F(Ctr1).

Ctr1 and Ctr2 are equivalent, denoted by Ctr1 ≡ Ctr2, if they refine each other.

For the full refinement calculus of components, we refer the reader to [5].

2.4 Component

A component is an implementation of a contract of its provided interface. To
implement such a contract, the component may use services provided by other
components. These services are called required services and are specified as a
contract of an interface that is called the required interface.

Formally, a component C is a tuple (I , Init ,MCode,PriMDec,PriMCode, InMDec),

where

1. I and Init are its interface and initial condition, respectively;
2. PriMDec is a set of method declarations that are internal to the component;
3. MCode (PriMCode) maps each method m in I.MDec (resp. PriMDec) to a

program of a underlining programming language. However, according to the
results of [8], any program can be abstracted as a guarded command g&c,
further to a guarded design. W.l.o.g., we always assume that the two functions
map each method to a guarded command from now on.

4. InMDec denotes a required interface which operations may be called in the
implementations of the operations in PriMCode and I.MDec, but not declared
there.

We use C.I, C.Init , C.MCode, C.PriMDec, C.PriMCode and C.InMDec to denote
the corresponding parts of C.

According to [8], a guarded command g&c can always be defined as a guarded
design Dsn(g&c). The command c may contain both invocations to methods in
PriMDec and InMDec. Once the code of the private commands are given, their
semantics can be used for the calculation of Dsn(g&c). However, Dsn(g&c) also
depends on the given contract of the required interface. Therefore, the semantics
of component C is defined to be the contract function [[C]](·) such that for any
given contract InCtr of the required interface InMDec, [[C]](InCtr) is the contract
of the provided interface I.MDec in which the guarded design of each operation
m is calculated by Dsn(MCode(m)) from the code of PriMDec and the given
required contract. A component C is called closed if it does not require external
services.

2.5 Chaining components together

It is a natural way to compose components by chaining the provided operations
of one component to the required operation of the other.

Definition 2 Let C1 and C2 be components such that C1.I.FDec∩C2.I.FDec = ∅,
C1.I.MDec ∩ C2.I.MDec = ∅ and C1.P riMDec ∩ C2.P riMDec = ∅. Then the
chaining C1 to C2, denoted by C1〉〉C2, is the component with

– (C1〉〉C2).FDec
def
= C1.FDec ∪ C2.FDec,

– (C1〉〉C2).InMDec
def
= (C2.InMDec ∪ C1.InMDec)− (C2.MDec ∪ C1.MDec),

– (C1〉〉C2).MDec
def
= C1.MDec ∪ C2.MDec,

– (C1〉〉C2).Init
def
= C1.Init ∧ C2.Init,

– (C1〉〉C2).Code
def
= C1.Code ∪ C2.Code, and

– (C1〉〉C2).PriCode
def
= C1.PriCode ∪ C2.PriCode.

It is easy to show that the chaining operator is monotonic w.r.t. the refine-
ment order of components [6]. In the special case when (C1.InMDec∪C2.InMDec)∩
(C1.MDec ∪ C2.MDec) = ∅ , the chaining C1 to C2 is called disjoint union and
denoted as C1||C2. Some other operators over components have also been defined
in [6] such as renaming, feedback and hiding.

Example 5. Define two buffer components C1 and C2 as follows

C1 .FDec = {buff1 :Seq(int)}
C1 .MDec = {put(in x :int), get1 (out y :int)}
C1 .Code(put) = (buff1 :=〈x 〉) ¢ buff1=〈〉¤ (put1 (head(buff1)); buff1 :=〈x 〉)
C1 .Code(get1) = (buff1 6=〈〉) −→ (y :=head(buff1); buff1=〈〉)
C1 .InMDec = {put1 (in x :int)}

C2 .FDec = {buff2 :Seq(int)}
C2 .MDec = {put1 (in x :int), get(out y :int)}
C2 .Code(put1) = (buff2=〈〉) −→ buff2 :=〈x 〉
C2 .Code(get) = (y :=head(buff2); buff2 :=〈〉) ¢ buff2 6=〈〉¤ get1 (y)
C2 .InMDec = {get1 (in y :int)}

Then, C1〉〉C2 is shown in Fig.1 (a), hiding get1 in C1〉〉C2, i.e. (C1〉〉C2)\{get1}
is shown in Fig.1 (b).

(a)

C1

put get1

C2

get

put1
put1

(b)

C1

put

C2

get

put1
put1

Fig. 1. (a) Chaining Composition, (b) Hiding After Chaining

3 Processes: A Model of Glue and Application Programs

In addition to building new components by applying the component operators
defined in the previous section to existing components, we often need to glue
existing components with a program to form a new component. Because in the
most cases, we have to restrict the behaviour of the existing components and
coordinate them in order to construct a new component from them. Thus, these
component operators will not be applicable any more. For example, it is impos-
sible to simply apply the chaining operator to two one-place buffers with the
same contract defined in Example 3 to produce a two-place buffer as we did in
Example 5.

Glue code in general has different characteristics from components and we
model it as a process. Like a component, a process has an interface declaring
its own local variables and methods and its behavior is specified by a process
contract. Unlike a component which passively waits for a client to call its pro-
vided services, a process is active and has its own flow of control on when to call
out or to wait for a call to its provided services. For such an active process, we
cannot have separate contracts for the provided interface and required interface,
because we cannot have separate specifications of outgoing calls and incoming
calls [6].

Glue codes and application programs play different roles in component-based
software development. However, their behavior shares common characteristics.
Application programs have their own control flows, and carry out their own
computation task by using services provided by components, interacting with
components in the same way as a glue program.

In this section, we define the model of processes and the glue composition
of a process and a component. For simplicity and predictability, we assume that

processes do not provide methods to their environment and do not communicate
directly with each other. They are loosely coupled and can only communicate
via invoking methods of components. The composition of processes is defined by
interleaving and yields a new process.

3.1 Processes

The interface of a process is the access point through which the process invokes
the operations of components. The process also carries out local computation by
changing its local variables.

Definition 3 A process interface I is a pair 〈FDec,MDec〉, where FDec is a set
of field declarations, and MDec is a set of method invocation signatures. Each of
them is of the form !m(inu : U,out v : V).

A process contract Ctr is a triple 〈I, Init ,MSpec〉, where I is a process inter-
face, Init and MSpec are defined same as in a reactive contract.

We use the notation I.MDec to denote the set {m |!m(inu : U,out v : V) ∈
I.MDec}.
Example 6. As shown in Fig.2 (a), a three-place buffer is built by gluing two
one-place buffers defined in Example 3. The contract of the glue process is

I.FDec = {tmp : seq(int)}
I.MDec = {!put(inu : int), !get(out v : int)}
Init = |tmp| = 0
MSpec(!put(u)) = {u, tmp} : |tmp| > 0& ` u′ = head(tmp) ∧ tmp′ = 〈〉
MSpec(!get(v)) = {v, tmp} : |tmp| = 0& ` tmp′ = 〈v〉

As shown in the Fig.2 (b), to construct a two-place buffer, we need a new
component that assures the execution of sequence get1(x), put2(x) is not inter-
rupted. Here, M.Code(move) = {get1(u); put2(u)}

The dynamic behavior of a process contract is defined on the basis of the
observable events of the forms !m(u) for making an invocation and m(v)? for

(a)

C1

put

C2

get

put1get1

P

(b)

 move

C1

put1
C2

get2

put2get1

P

M

Fig. 2. (a) Gluing Two One-place Buffers Forms a Three-place Buffer, (b) Gluing Two
One-place Buffers Forms a Two-place Buffer

receiving a return from the invoked component. These are the synchronization
complementary events of ?m(u) and m(v)! in the behavior of a component con-
tract.

F(Ctr) and D(Ctr) of a process contract Ctr are defined as:

– D(Ctr) consists of the sequences of interactions between Ctr and its environ-
ment which lead the contract to a divergent state. Each of such sequences is
of the form 〈!m1(x1), m1(y1)?, . . . , !mk(xk), mk(yk)?, !mk+1(xk+1)〉 · s, where s is
any sequence of method calls and the execution of mk+1 diverges.

– F(Ctr) is the set of pairs (s, X) where s is a sequence of interactions between
Ctr and its environment, and X denotes a set of methods that the contract
may refuse to respond to after engaging all events in s. Any (s, X) ∈ F should
be one of the following cases:
1. s = 〈!m1(x1), m1(y1)?, . . . , !mk(xk), mk(yk)?〉 and ∀m ∈ X .¬gm, k ≥ 0. If k

= 0 then s =<>. This case represents that each method in X cannot be
engaged after executing the sequence of calls, because their guards do
not hold in the state.

2. s = 〈!m1(x1), m1(y1)?, . . . , !mk(xk)〉 and mk? 6∈ X. This corresponds to the
case where the contract is waiting for the return.

3. s = 〈!m1(x1), m1(y1)?, . . . , !mk(xk)〉 and X could be any set of methods.
Here the execution of mk enters a waiting state.

4. Finally, s ∈ D(Ctr) and X can be any set of methods. That is, a divergent
trace with any set of methods always forms a failure.

For a divergence free contract, case (4) will disappear. We can combine !m(x)

and m(y)? into m(x, y) and describe the failures in terms of sequences over events
m(x, y) by removing !mk(xk) from the traces in cases (2) and (3) and put the
event m(x, y) into the refusal set. Thus, F(Ctr) can be simply defined as:

1. s = 〈m1(x1, y1), . . . , mk(xk, yk)〉 and ∀m ∈ X .¬gm; or
2. s = 〈m1(x1, y1), . . . mk(xk, yk)〉 and ∀m ∈ X if m is executed following s, then

m must reach a waiting state.

It is worth noting that the difference of failures and divergences of processes
and contracts lies in the forms of sequences of method calls, the former’s is of
the form !m1(x1), m1(y1)?, · · · , !mk(xk), m(yk)?, · · ·, while the latter’s is of the form
?m1(x1), m1(y1)!, · · · , ?mk(xk), m(yk)!, · · ·.
Example 7. The dynamic behaviour of the process given in the Example 6 can
be described by the following failure/divergence model:

D = ∅
F = {(s, X) | ∃k ∈ N.((s = 〈S′(k)〉 ∧X ⊆ {!get1})

∨ (s = 〈S(k)′, !get1()〉 ∧X ⊆ {get1?})
∨ (s = 〈S′(k), !get1(), get1(xk+1)?〉 ∧X ⊆ {!put2})
∨ (s = 〈S′(k), !get1(), get1(xk+1)?, !put2(xk+1)〉 ∧X ⊆ {put2?}))}

where

S′(k)
def
= !get1(), get1(x1)?, !put2(x1), put2()?, ..., !get1(), get1(xk)?, !put2(xk), put2()?

Y
def
= {!get1(), get1()?, !put2(), put2()?} − Y

In fact, a process can be seen as a special component without provided ser-
vices. Therefore, we can apply the chaining operator of components to processes
to produce new processes. However, all application of the operator to any two
processes P1 and P2 will be degenerated to the disjoint union of P1 and P2, i.e.
P1 ‖ P2, as P1 and P2 both have no provided services. On the other hand, the
other operators such as renaming and hiding can not apply to processes, because
from a logical point of view, the names of the required services of a process are
bound to the process.

3.2 Composing a component with a process

We consider the glue composition of a closed component and a process. If there
are a number of closed components to be glued by a process, the disjoint union
of these components forms another closed component.

Definition 4 Let C be a closed component and P be a process that only calls
methods provided by C, then the failures and divergences of the synchroniza-
tion composition C ‖ [X]P , denoted as F(C ‖ [X]P) and D(C ‖ [X]P) respectively,
similarly to [12], are defined as:

D(C ‖ [X]P)
= {a • b | ∃s ∈ T (C), t ∈ T (P).a ∈ (s ‖ [X]t) ∩Σ∗ ∧ (s ∈ D(C) ∨ t ∈ D(P))}
F(C ‖ [X]P)

= {(a, Y ∪ Z) | Y \X = Z \X ∧ ∃s ∈ T (C)∃t ∈ T (P).((s, Y) ∈ F(C)∧
(t, Z) ∈ F(P) ∧ a ∈ (s ‖ [X]t))} ∪ {(a, Y) | a ∈ D(C ‖ [X]P)}

where T (Q) stands for the set of traces of Q, where Q is either a component or a
process; X is the set of synchronized methods; Σ = {?m(xi), m(yi)! | m ∈ C.MDec},
b ∈ Σ∗ and s ‖ [X]t denotes the parallel operation over traces, e.g. abc ‖ [{b, c}]a′bcd =

{aa′bcd, a′abcd}.

We can also apply the hiding operator of CSP to a component C and make
any action in X become internal and invisible, denoted as C\X . Its dynamic
behavior is defined as:

D(C \X) = {(s ¹ X) • t | s ∈ D(C) ∧ t ∈ T (C) ¹ X}
∪{(a ¹ X) • t | t ∈ T (C) ¹ X ∧ a ∈ Σ∞ ∧ |a ¹ X| < ∞∧ ∀s ¹ a.s ∈ T (C)}

F(C ¹ X) = {(s ¹ X, Y −X) | (s, Y) ∈ F(C)} ∪ {(s, Y) | s ∈ D(C \X)}

Definition 5 Let C be a closed component, P a process s.t. P.MDec ⊆ C.MDec,
the gluing composition C¯ P is defined as: C ¯ P

def
= (C ‖ [P.MDec]P) \ P.MDec.

The following theorem gives an answer to what is the entity obtained by the
glue composition.

Theorem 1. Suppose a closed component C and a process P satisfying the con-
dition P.MDec ⊆ C.MDec, then C ¯ P is a closed component.

Similarly, we can prove that the glue composition applying to an open com-
ponent and a process produces an open component. That is,

Theorem 2. If C is an open component with a required interface InMDec and
P is a process that only calls the provided methods of C, then (C¯ P) is an open
component with the required interface InMDec.

The semantics of the open component (C¯ P) is defined as a function that
given a contract of the required interface, returns a contract of the provided
interface, denoted as λ InCtr .(C ¯ P)(InCtr). It is easy to see that (C¯P)(InCtr) =

C(InCtr)¯ P

Example 8. Consider the component given in Fig.2 (a). Its dynamic behaviour
is given by the following failures since it is divergence free.

F = {(tr, X) | tr ∈ {put1, get2}∗ ∧X ∈ P{put1, get2} ∧ ∀tr1 ¹ tr.
(tr1 ↓ put1 − tr1 ↓ get2 ≤ 3 ∧ vals(tr1 ¹ get2) ¹ vals(tr1 ¹ put1))∧
((tr ↓ put1 = tr ↓ get2 ∧X ⊆ {get2}) ∨ (tr ↓ put1 − tr ↓ get2 ≤ 2 ∧X = ∅)∨

(tr ↓ put1 = tr ↓ get2 + 2 ∧X ⊆ {put1}))}
where vals(s) returns the parameters occuring in the sequence s, and (tr ↓ put1−
tr ↓ get2) is used to compute the number of items stored in the buffer.

3.3 The state-based reactive contract of a glued component

In this section, we study how to calculate the “state-based” reactive contract
of a glued component in terms of the field variables of its subcomponent and
process.

The approach is based on the observation that if there is a sequence of
methods s = 〈m, m1, . . . , mk, n〉 occurring in a trace of C ‖ [P.MDec]P, where
m, n /∈ P.MDec and m1, . . . , mk ∈ P.MDec, the behaviour [|m|]; [|m1|]; . . . ; [|mn|] can
be considered as a possible behaviour of m in the glued component, where “;”
means the sequential composition of guarded designs [8]. The reason is because
m1, . . . , mk are hidden and therefore become invisible in the glued component.
Thus, for an observable method m /∈ P.MDec, its guarded design is the non-
deterministic choice [8] of all those possible behaviour. However, it is easy to see
that this approach only works when the glued component does not diverge. The
divergence freedom can be proved by the theory of CSP and the FDR model
checking tool.

Whenever a divergence free trace of C‖ [P.MDec]P has a prefix of the form
〈m1, . . . , mn, m〉, where m /∈ P.MDec and m1, . . . , mn ∈ P.MDec, we put the be-
haviour of the invisible sequence 〈m1, . . . , mn〉 to be part of the initial condition.

Formally, we present our approach as follows: Let C be a closed component
and P a process with P.MDec ⊆ C.MDec. Then the contract for (C¯ P) can be
calculated as follows:

(C ¯ P).FDec
def
= C.FDec ∪ P.FDec

(C ¯ P).MDec
def
= C.MDec − {P.MDec}

(C ¯ P).Init
def
= (C.Init ∧ P.Init) ∧ utr∈G(C.Init ∧ P.Init); [|tr|]

(C ¯ P).MSpec(m)
def
= C.MSpec(m) utr∈Q(m) [|tr|], ∀m ∈ (C ¯ P).MDec

where

– G def
= {hτ | ∃s ∈ Σ∗, ∃n ∈ (C ¯ P).MDec. (hτ ∈ P.MDec

+ ∧ hτ • 〈n〉 • s ∈ LT)},
which is the set of maximal invisible prefixes of legal traces.

– Q(m)
def
= {〈m〉•hτ | ∃r, s ∈ Σ∗, ∃n ∈ (C¯P).MDec.(hτ ∈ P.MDec

+∧r•〈m〉•hτ •
〈n〉 • s ∈ LT)} . Q(m) contains all the sequences of the form 〈m, m1, . . . , mn〉
in each of the divergence free traces of C ¯ P , where m1, . . . , mn ∈ P.MDec.

– LT def
= {t ∈ T (C) | ∃X ∈ P(C.MDec). (t, X) ∈ F(C ‖ [X]P) ∧ t /∈ D(C ‖ [X]P)∧

(t ¹ X) /∈ D((C ‖ [X]P) \X)}. That is, the legal traces of C ¯ P are those that
themselves and their projections on Σ −X are not divergent .

– [|tr|] maps each sequence tr to a guarded design which is calculated by se-
quentially composing the guarded design of each method of tr in turn. The
guarded design of each method is defined by the following rules:
1. [|mg|] is C.MSpec(m) if m /∈ P.MDec, otherwise C.MSpec(m) ∧ P.MSpec(m).

It is easy to see that [|mg|] is a guarded design, for any m ∈ C.MDec;
2. if tr = 〈m1, m2, . . . , mn〉, then [|tr|] = [|mg

1|]; [|mg
2|]; . . . ; [|mg

n|]. Here, “;” means the
sequential composition of (guarded) designs (see [8]).

Here, we have to point out that there may be different way to construct
the possible behaviour of an observable method and the initial condition, it
can therefore result in different contracts. For example, for the sequence 〈m〉 •
τ1•τ2•〈n〉, instead of defining their guarded design as MSpec(m)

def
= [|m; τ1; τ2|] and

MSpec(n)
def
= [|n|], we can define them as MSpec(m)

def
= [|m; τ1|] and MSpec(n)

def
= [|τ2; n|].

However, it is easy to prove that all these contracts should refine each other since
they share the same failures and divergences as that of (C ‖ [P.MDec]P)\P.MDec.

Example 9. Calculate the contract of the component given in Fig.2 (a) from its
dynamic behaviour in Example 8, and the contract of the process and one place
buffer given in Example 6 and Example 3 respectively.

I .FDec = {tmp, buff 1, buff 2 : seq(int)}
I .MDec = {put1(inu : int;), get2(out v : int)}

Init = tmp′ = 〈〉 ∧ buff ′
1 = 〈〉 ∧ buff ′

2 = 〈〉
MSpec(put1) = C1.MSpec(put1) u [|put1; get1|] u [|put1; get1; put2|] u [|put1; put2|]

u[|put1; put2; get1|] u [|put1; get1|]
= {buff 1} : |buff 1| = 0& ` buff ′

1 = 〈u〉
u{tmp} : |buff 1| = 0 ∧ |tmp| = 0 ∧ |buff 2| = 0& ` tmp′ = 〈u〉
u{buff 2} : |buff 1| = 0 ∧ |tmp| = 0 ∧ |buff 2| = 0& ` buff ′

2 = 〈u〉
u{buff 1, tmp, buff 2} : |buff 1| = 0 ∧ |tmp| 6= 0 ∧ |buff 2| = 0&

` buff ′
1 = 〈u〉 ∧ tmp′ = 〈〉 ∧ buff ′

2 = tmp

u{tmp, buff 2} : |buff 1| = 0 ∧ |tmp| 6= 0 ∧ |buff 2| = 0&

` tmp′ = 〈u〉 ∧ buff ′
2 = tmp

u{tmp, buff 2} : |buff 1| = 0 ∧ |tmp| = 0 ∧ |buff 2| 6= 0&

` tmp′ = 〈u〉 ∧ buff ′
2 = tmp

Similarly, we can calculate MSpec(get2). Due to space, we omit it.

This example shows that the calculation of the failures and divergences is
quite tedious. However it could be aided by the CSP tool FDR [12].

4 Relative Work

In CBD, how to construct composite components from existing ones is a chal-
lenging problem. In the object-oriented programming community, there has been
extensive research on attacking this issue. For example, SuperGlue [11], Jiazzi
[10], the calculus of assemblages [9] and so on. SuperGlue is a connection-based
asynchronous programming model. In SuperGlue, a component is either Su-
perGlue code or Java code with a set of signals (possibly infinite many), and
composing existing components is via connection rules over the signals of the
subcomponents defined by SuperGlue Code. While Jiazzi [10] can be used to con-
struct large-scale binary components in Java. Jiazzi components can be thought
of as generalizations of Java packages with added support for external linking
and separate compilation. Existing Java classes and Jiazzi components can be
composed by Jiazzi linker to a new Jiazzi component. The linking is similar to
the chaining operator in rCOS. Comparing with SuperGlue and Jiazzi, in our
approach, each component is equipped with a provided interface and its contract,
optionally as well as a required interface and its contract. Thus, components can
be more easily reused across different applications, as the provided interfaces and
contracts together with the required interfaces and contracts encapsulate their
designs and implementations, as well as their data structures. Furthermore, the
interoperability of components is well established in our model, since rCOS acts
as the underlying theory of component designs which unifies semantic models
of different programming languages and paradigms into the notion of interface
contracts. What’s more, our approach provides more means to compose new
components from existing ones, either by component operators or by glue codes.

SuperGlue, Jiazzi and rCOS all cope with composing (gluing) components
statically in the sense that all method names used for composing must be resolved
in the moment these components are composed (glued). Whereas the calculus of
assemblages [9] can handle the composing (gluing) dynamically. However, there
is no the notion of contracts within it either.

[13] investigated the notions of components, composition of components and
verification of composed components in an asynchronous interleaving event-
based model, called Asynchronous Interleaving Message-passing computation
model (AIM), with which the composition of components is interpreted as asyn-
chronous parallel, analogous remark is applied to the composition of properties
of components. In fact, we believe what was handled in [13] exactly corresponds
to what the chaining operator can do in rCOS. However, rCOS is a combina-
tion of event-based model and state-based model, whose event-based model is a
synchronous concurrent model in contrast to that of [13], an asynchronous con-
current model. So, rCOS allows different notations and methods for modelling

and analysing different aspects of components and processes, such as pre and
post conditions for functionality, traces of events for interaction protocols, fail-
ures and divergences for the denotational view of dynamic behavior and guarded
designs for operational views of dynamic behavior. This supports the separation
of concerns and gives the hope of integrating different verification techniques
and tools via this common model. In fact, the assume-guarantee proof style
used in [13] can also be easily adopted in our framework. However, our work
is not only about assume-guarantee verification in the original setting. When
chaining components together, the verification and calculation of the composed
components are different from the case when components are glued together.
Using verified properties in our framework is more about substitution of proof
obligations by theorems proved about services that are used in components or
application programs.

There are also various approaches to handle the composition of components
in the formal methods community. In [2], a component is defined as a stream
process function which maps the input streams of actions to the output streams
of actions. The refinement relation between components is defined over a pair
of input streams and output streams. rCOS clearly divides the provided con-
tract(input actions) and the required contract(output actions) and can treat
them separately, which greatly ease the composition of components. Like rCOS,
Reo[1] treats components and glue codes(connectors) as distinct types. The two
types build on a common formal foundation, the Abstract Behaviour Types. The
Abstract Behaviour Types is very expressive for specification, but it is hard to
be linked to implementation language. The notion of guarded design in rCOS
can link specifications and OO languages very smoothly.

5 Conclusions and Future Work

We have proposed a model supporting component-based programming. The
model unifies the component model developed earlier in [6] and the process model
defined here. Processes are introduced to model application programs and glue
programs which help developers to build new components from existing ones.

In the proposed model, a typical component-based application consists of a
family of components and a number of parallel application processes. Some of
the components are reused from a component repository while others are newly
built using gluing processes as well as component operators (chaining, service
renaming, and service hiding).

As for future work, we need to investigate the following issues:

– In this paper, the method to calculate the resulted contract of the gluing
of a component and a process is very complicated and difficult to track.
Therefore, as a future work, on one hand, we need to simplify the procedure;
on the other hand, we will look into automating the calculation.

– It will be interesting research topic to investigate how different verification
techniques and tools can be applied to rCOS.

– We are also interested in investigating on how rCOS can be applied to web
service systems, and to deal with quality of services (QoS) of components,
such as time and resource constraints.

– Case studies of realistic component systems such as CORBA.

Acknowledgements

We are grateful to Prof. Anders P. Ravn for pointing out many features in the
design of our model. We also thank Dr. Volker Stolz and Lu Yang for their com-
ments. Special thanks are also due to the anonymous referees for their valuable
suggestions and comments which help us to improve this paper including its
contents as well as its presentation so much.

References

1. F. Arbab. Abstract behavior types: A foundation model for components and their
composition. In Proc. of the FMCO 2002, volume 2852 of LNCS, pages 33–70.
Springer, 2003.

2. M. Broy and K. Stølen. Specification and Development of Interactive Systems:
FOCUS on Streams, Interfaces, and Refinement. Springer, 2001.

3. X. Chen, J. He, Z. Liu, and N. Zhan. Component-based programming. Technical
Report UNU-IIST Report No 350, April 2007.

4. J. He, X. Li, and Z. Liu. rCOS: A refinement calculus of object systems. Theoretical
Computer Science, 365(1-2):109–142, 2006.

5. J. He, X. Li, and Z. Liu. A theory of reactive components. In Proc. of FACS’05,
volume 160 of ENTCS, pages 173–195. Elsevier, 2006.

6. J. He, Z. Liu, and X. Li. Component software engineering. In Proc of ICTAC’05,
volume 3722 of LNCS, pages 269–276. Springer, 2005.

7. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
8. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall Inter-

national, 1998.
9. Y. Liu and S. Smith. Modules with interfaces for dynamic linking and communi-

cation. In ECOOP, volume 3086 of LNCS, pages 414–439. Springer, 2004.
10. S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age components for old-

fashioned java. In Proc. of OOPSLA 2001, pages 211–222. ACM, 2001.
11. S. McDirmid and W. Hsieh. Superglue: Component programming with object-

oriented signals. In ECOOP, volume 4067 of LNCS, pages 206–229. Springer,
2006.

12. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
13. F. Xie and J. Browne. Verified systems by composition from verified components.

In Proc. of ESEC/SIGSOFT FSE 2003, pages 277–286. ACM, 2003.

